📄 ll-ar.c
字号:
/*Author: Rainer Hegger. Last modified: Nov 22, 2000 */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "routines/tsa.h"#include <math.h>#define WID_STR "Estimates the average forecast error for a local\n\t\linear fit as a function of the neighborhood size."/*number of boxes for the neighbor search algorithm*/#define NMAX 128unsigned int nmax=(NMAX-1);long **box,*list;unsigned long *found;double *series;char eps0set=0,eps1set=0,causalset=0;char *outfile=NULL,stdo=1;unsigned int COLUMN=1;unsigned int DIM=2,DELAY=1;unsigned int verbosity=0xff;int STEP=1;double EPS0=1.e-3,EPS1=1.0,EPSF=1.2;unsigned long LENGTH=ULONG_MAX,exclude=0,CLENGTH=ULONG_MAX,causal;char *infile=NULL;double **mat,*vec;void show_options(char *progname){ what_i_do(progname,WID_STR); fprintf(stderr," Usage: %s [options]\n",progname); fprintf(stderr," Options:\n"); fprintf(stderr,"Everything not being a valid option will be interpreted" " as a possible" " datafile.\nIf no datafile is given stdin is read. Just - also" " means stdin\n"); fprintf(stderr,"\t-l # of data to use [default: whole file]\n"); fprintf(stderr,"\t-x # of lines to be ignored [default: 0]\n"); fprintf(stderr,"\t-c column to read [default: 1]\n"); fprintf(stderr,"\t-m embedding dimension [default: 2]\n"); fprintf(stderr,"\t-d delay [default: 1]\n"); fprintf(stderr,"\t-i iterations [default: length]\n"); fprintf(stderr,"\t-r neighborhood size to start with [default:" " (interval of data)/1000)]\n"); fprintf(stderr,"\t-R neighborhood size to end with [default:" " interval of data]\n"); fprintf(stderr,"\t-f factor to increase size [default: 1.2]\n"); fprintf(stderr,"\t-s steps to forecast [default: 1]\n"); fprintf(stderr,"\t-C width of causality window [default: steps]\n"); fprintf(stderr,"\t-o output file name [default: 'datafile.ll']\n"); fprintf(stderr,"\t-V verbosity level [default: 1]\n\t\t" "0='only panic messages'\n\t\t" "1='+ input/output messages'\n"); fprintf(stderr,"\t-h show these options\n"); exit(0);}void scan_options(int n,char **in){ char *out; if ((out=check_option(in,n,'l','u')) != NULL) sscanf(out,"%lu",&LENGTH); if ((out=check_option(in,n,'x','u')) != NULL) sscanf(out,"%lu",&exclude); if ((out=check_option(in,n,'c','u')) != NULL) sscanf(out,"%u",&COLUMN); if ((out=check_option(in,n,'m','u')) != NULL) sscanf(out,"%u",&DIM); if ((out=check_option(in,n,'d','u')) != NULL) sscanf(out,"%u",&DELAY); if ((out=check_option(in,n,'i','u')) != NULL) sscanf(out,"%lu",&CLENGTH); if ((out=check_option(in,n,'r','f')) != NULL) { eps0set=1; sscanf(out,"%lf",&EPS0); } if ((out=check_option(in,n,'R','f')) != NULL) { eps1set=1; sscanf(out,"%lf",&EPS1); } if ((out=check_option(in,n,'f','f')) != NULL) sscanf(out,"%lf",&EPSF); if ((out=check_option(in,n,'s','u')) != NULL) sscanf(out,"%u",&STEP); if ((out=check_option(in,n,'C','u')) != NULL) { sscanf(out,"%u",&causal); causalset=1; } if ((out=check_option(in,n,'V','u')) != NULL) sscanf(out,"%u",&verbosity); if ((out=check_option(in,n,'o','o')) != NULL) { stdo=0; if (strlen(out) > 0) outfile=out; }}double make_fit(long act,unsigned long number){ double hs,casted; int i,j,k,which; for (i=0;i<=DIM;i++) { vec[i]=0.0; for (j=0;j<=DIM;j++) mat[i][j]=0.0; } for (k=0;k<number;k++) { which=found[k]; vec[0] += series[which+STEP]; for (i=1;i<=DIM;i++) mat[0][i] += series[which-(i-1)*DELAY]; } mat[0][0]=(double)number; for (k=0;k<number;k++) { which=found[k]; for (i=1;i<=DIM;i++) { hs=series[which-(i-1)*DELAY]; vec[i] += series[which+STEP]*hs; for (j=i;j<=DIM;j++) mat[i][j] += series[which-(j-1)*DELAY]*hs; } } for (i=0;i<=DIM;i++) { vec[i] /= number; for (j=i;j<=DIM;j++) { mat[i][j] /= number; mat[j][i]=mat[i][j]; } } solvele(mat,vec,(unsigned int)(DIM+1)); casted=vec[0]; for (i=1;i<=DIM;i++) casted += vec[i]*series[act-(i-1)*DELAY]; return (casted-series[act+STEP])*(casted-series[act+STEP]);}int main(int argc,char **argv){ char stdi=0; unsigned long actfound; unsigned long *hfound; long pfound,i; unsigned long clength; double interval,min; double epsilon; double rms,av,error=0.0,avfound,hrms,hav; FILE *file=NULL; if (scan_help(argc,argv)) show_options(argv[0]); scan_options(argc,argv);#ifndef OMIT_WHAT_I_DO if (verbosity&VER_INPUT) what_i_do(argv[0],WID_STR);#endif if (!causalset) causal=STEP; infile=search_datafile(argc,argv,&COLUMN,verbosity); if (infile == NULL) stdi=1; if (outfile == NULL) { if (!stdi) { check_alloc(outfile=(char*)calloc(strlen(infile)+4,(size_t)1)); sprintf(outfile,"%s.ll",infile); } else { check_alloc(outfile=(char*)calloc((size_t)9,(size_t)1)); sprintf(outfile,"stdin.ll"); } } if (!stdo) test_outfile(outfile); series=(double*)get_series(infile,&LENGTH,exclude,COLUMN,verbosity); rescale_data(series,LENGTH,&min,&interval); variance(series,LENGTH,&av,&rms); check_alloc(list=(long*)malloc(sizeof(long)*LENGTH)); check_alloc(found=(unsigned long*)malloc(sizeof(long)*LENGTH)); check_alloc(hfound=(unsigned long*)malloc(sizeof(long)*LENGTH)); check_alloc(box=(long**)malloc(sizeof(long*)*NMAX)); for (i=0;i<NMAX;i++) check_alloc(box[i]=(long*)malloc(sizeof(long)*NMAX)); check_alloc(vec=(double*)malloc(sizeof(double)*(DIM+1))); check_alloc(mat=(double**)malloc(sizeof(double*)*(DIM+1))); for (i=0;i<=DIM;i++) check_alloc(mat[i]=(double*)malloc(sizeof(double)*(DIM+1))); if (eps0set) EPS0 /= interval; if (eps1set) EPS1 /= interval; clength=(CLENGTH <= LENGTH) ? CLENGTH-STEP : LENGTH-STEP; if (!stdo) { file=fopen(outfile,"w"); if (verbosity&VER_INPUT) fprintf(stderr,"Opened %s for writing\n",outfile); fprintf(file,"#1. size 2. relative forecast error 3. fraction of points\n" "#4. av neighbors found 5. absolute variance of the points\n"); } else { if (verbosity&VER_INPUT) fprintf(stderr,"Writing to stdout\n"); } for (epsilon=EPS0;epsilon<EPS1*EPSF;epsilon*=EPSF) { pfound=0; error=0.0; avfound=0.0; hrms=hav=0.0; make_box(series,box,list,LENGTH-STEP,NMAX,DIM,DELAY,epsilon); for (i=(DIM-1)*DELAY;i<clength;i++) { actfound=find_neighbors(series,box,list,series+i,LENGTH,NMAX,DIM,DELAY, epsilon,hfound); actfound=exclude_interval(actfound,i-causal+1,i+causal+(DIM-1)*DELAY-1, hfound,found); if (actfound > 2*(DIM+1)) { error += make_fit(i,actfound); pfound++; avfound += (double)(actfound-1); hrms += series[i+STEP]*series[i+STEP]; hav += series[i+STEP]; } } if (pfound > 1) { hav /= pfound; hrms=sqrt(fabs(hrms/(pfound-1)-hav*hav*pfound/(pfound-1))); error=sqrt(error/pfound)/hrms; } if (stdo) { if (pfound > 1) { fprintf(stdout,"%e %e %e %e %e\n",epsilon*interval,error, (double)pfound/(clength-(DIM-1)*DELAY),avfound/pfound, hrms*interval); fflush(stdout); } } else { if (pfound > 1) { fprintf(file,"%e %e %e %e %e\n",epsilon*interval,error, (double)pfound/(clength-(DIM-1)*DELAY),avfound/pfound, hrms*interval); fflush(file); } } } if (!stdo) fclose(file); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -