⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eigen.m

📁 该程序对ofdm系统中mmsnr的信道缩短算法的误码率性率进行了仿真
💻 M
字号:
%EIGEN Solves the eigenvalue problem in design of the unit-energy  constrained % minimum mean-squared error time domain equalizer.% [B, W, D, MSE, R, Dv] = EIGEN(RXX, RYY, RXY, Dmin, Dmax, Nb, Nw, L) % returns the optimal target impulse response B, the time domain % equalizer W, and the delay D. %MSE is the resulting mean-squared error.  % R is the input-output cross-correlation matrix obtained with the the optimum delay D% and Dv is a vector containing the mean-squared error for delay values between Dmin and Dmax.% RXX is the input autocorrelation matrix. % RYY is the output autocorrelation matrix.% RXY is the input-output cross-correlation vector used to generate the% input-output cross-correlation matrix depending on the current delay. % Dmin and Dmax define the search interval for the optimal delay.% Nb is the number of taps in the target  impulse response.% Nw the number of taps in the time domain equalizer. function [b, w, d, MSE, Rxyopt, Dv] = ...	eigen(Rxx,Ryy,rxy,Dmin,Dmax,Nb,Nw,L) % initialize variablesDv = ones(1,Dmax);MSE = inf;for delay = Dmin:Dmax; % for each delay to be searched   % calculate the input-output cross-correlation matrix  Rxy = toeplitz(rxy(L+(0:Nb-1)+delay+1),rxy(L-(0:Nw-1)+delay+1));  % calculate the MSE matrix  Rdelta = Rxx - Rxy*inv(Ryy)*Rxy';  % find the eigenvector corresponding to the minimum eigenvalue  [mse bb] = mineig(Rdelta); % save the MSE   Dv(delay) = mse;    if mse < MSE    % if the current MSE is lower then previous ones	% save the current target, delay, MSE, and crosscorrelation matrix	b = bb;	d = delay;	MSE  = mse;	Rxyopt = Rxy;  endend% use the optimum target impulse response to find the optimum TEQw = inv(Ryy)*Rxyopt'*b;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -