📄 eigen.m
字号:
%EIGEN Solves the eigenvalue problem in design of the unit-energy constrained % minimum mean-squared error time domain equalizer.% [B, W, D, MSE, R, Dv] = EIGEN(RXX, RYY, RXY, Dmin, Dmax, Nb, Nw, L) % returns the optimal target impulse response B, the time domain % equalizer W, and the delay D. %MSE is the resulting mean-squared error. % R is the input-output cross-correlation matrix obtained with the the optimum delay D% and Dv is a vector containing the mean-squared error for delay values between Dmin and Dmax.% RXX is the input autocorrelation matrix. % RYY is the output autocorrelation matrix.% RXY is the input-output cross-correlation vector used to generate the% input-output cross-correlation matrix depending on the current delay. % Dmin and Dmax define the search interval for the optimal delay.% Nb is the number of taps in the target impulse response.% Nw the number of taps in the time domain equalizer. function [b, w, d, MSE, Rxyopt, Dv] = ... eigen(Rxx,Ryy,rxy,Dmin,Dmax,Nb,Nw,L) % initialize variablesDv = ones(1,Dmax);MSE = inf;for delay = Dmin:Dmax; % for each delay to be searched % calculate the input-output cross-correlation matrix Rxy = toeplitz(rxy(L+(0:Nb-1)+delay+1),rxy(L-(0:Nw-1)+delay+1)); % calculate the MSE matrix Rdelta = Rxx - Rxy*inv(Ryy)*Rxy'; % find the eigenvector corresponding to the minimum eigenvalue [mse bb] = mineig(Rdelta); % save the MSE Dv(delay) = mse; if mse < MSE % if the current MSE is lower then previous ones % save the current target, delay, MSE, and crosscorrelation matrix b = bb; d = delay; MSE = mse; Rxyopt = Rxy; endend% use the optimum target impulse response to find the optimum TEQw = inv(Ryy)*Rxyopt'*b;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -