⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 macroblock.c

📁 avs源代码
💻 C
📖 第 1 页 / 共 5 页
字号:
}

/*
*************************************************************************
* Function:Residual Coding of an 8x8 Luma block (not for intra)
* Input:
* Output:
* Return: 
* Attention:
*************************************************************************
*/

int                                       //  ==> coefficient cost
LumaResidualCoding8x8 (int  *cbp,         //  --> cbp (updated according to processed 8x8 luminance block)
                       int  *cbp_blk,     //  --> block cbp (updated according to processed 8x8 luminance block)
                       int  block8x8,     // <--  block number of 8x8 block
                       int  fw_mode,      // <--  forward  prediction mode (1-7, 0=DIRECT)
                       int  bw_mode,      // <--  backward prediction mode (1-7, 0=DIRECT)
                       int  fw_refframe,  // <--  reference frame for forward prediction
                       int  bw_refframe   // <--  reference frame for backward prediction
                       )
{
  int    block_y, block_x, pic_pix_y, pic_pix_x, i, j, cbp_blk_mask;
  int    coeff_cost = 0;
  int    mb_y       = (block8x8 / 2) << 3;
  int    mb_x       = (block8x8 % 2) << 3;
  int    cbp_mask   = 1 << block8x8;
  int    bxx, byy;                   // indexing curr_blk
  int    scrFlag = 0;                // 0=noSCR, 1=strongSCR, 2=jmSCR
  byte** imgY_original = imgY_org;
  int  pix_x    = img->pix_x;
  int  pix_y    = img->pix_y;
	Macroblock* currMB = &img->mb_data[img->current_mb_nr];
  int    direct    = (fw_mode == 0 && bw_mode == 0 && (img->type==B_IMG));
  int    skipped   = (fw_mode == 0 && bw_mode == 0 && (img->type!=B_IMG));
  short    curr_blk[B8_SIZE][B8_SIZE]; // AVS 8x8 pred.error buffer
  int  incr_y=1,off_y=0; /*lgp*/

  int IntraPrediction=IS_INTRA (currMB);  //cjw 20060321


  if (img->type==B_IMG)
    scrFlag = 1;
  
  
  //===== loop over 4x4 blocks =====
  for (byy=0, block_y=mb_y; block_y<mb_y+8; byy+=4, block_y+=4)
  {
    //pic_pix_y = pix_y + block_y;/*lgp*/
		pic_pix_y = pix_y + mb_y;/*lgp*/

    for (bxx=0, block_x=mb_x; block_x<mb_x+8; bxx+=4, block_x+=4)
    {
      pic_pix_x = pix_x + block_x;

      cbp_blk_mask = (block_x>>2) + block_y;

      //===== prediction of 4x4 block =====
      LumaPrediction4x4 (block_x, block_y, fw_mode, bw_mode, fw_refframe, bw_refframe);

	  
	// !! start shenyanfei 
	//if(((!direct)&&(!skipped)&&(img->LumVarFlag == 1) && (img->mb_weighting_flag == 0)&&(img->weighting_prediction == 1))
       //if(((!skipped)&&(!direct)&&(img->LumVarFlag == 1) && (img->mb_weighting_flag == 1)&&(img->weighting_prediction == 1))  //cjw 20051230
       if(((!skipped) && (img->LumVarFlag == 1) && (img->mb_weighting_flag == 1)&&(img->weighting_prediction == 1)) //cjw 20060321
		   ||((img->LumVarFlag == 1) && (img->mb_weighting_flag == 0))){
				for (j=0; j<4; j++)
					for (i=0; i<4; i++)
						img->mpr[i+block_x][j+block_y] = img->mpr_weight[i+block_x][j+block_y];
			}
		// !! end shenyanfei

      //===== get displaced frame difference ======
      for (j=0; j<4; j++)
      for (i=0; i<4; i++)
      {
        img->m7[i][j] = curr_blk[byy+j][bxx+i] = 
			imgY_original[pic_pix_y+incr_y*(j+byy)+off_y/*lgp*/][pic_pix_x+i] - img->mpr[i+block_x][j+block_y];
      }
    }
  }

  if (!skipped)
  {
		transform_B8(curr_blk);
		coeff_cost = scanquant_B8   (img->qp-MIN_QP, 0, block8x8, curr_blk, scrFlag, cbp, cbp_blk);	
  }
/*
  The purpose of the action below is to prevent that single or 'expensive' coefficients are coded.
  With 4x4 transform there is larger chance that a single coefficient in a 8x8 or 16x16 block may be nonzero.
  A single small (level=1) coefficient in a 8x8 block will cost: 3 or more bits for the coefficient,
  4 bits for EOBs for the 4x4 blocks,possibly also more bits for CBP.  Hence the total 'cost' of that single
  coefficient will typically be 10-12 bits which in a RD consideration is too much to justify the distortion improvement.
  The action below is to watch such 'single' coefficients and set the reconstructed block equal to the prediction according
  to a given criterium.  The action is taken only for inter luma blocks.

  Notice that this is a pure encoder issue and hence does not have any implication on the standard.
  coeff_cost is a parameter set in dct_luma() and accumulated for each 8x8 block.  If level=1 for a coefficient,
  coeff_cost is increased by a number depending on RUN for that coefficient.The numbers are (see also dct_luma()): 3,2,2,1,1,1,0,0,...
  when RUN equals 0,1,2,3,4,5,6, etc.
  If level >1 coeff_cost is increased by 9 (or any number above 3). The threshold is set to 3. This means for example:
  1: If there is one coefficient with (RUN,level)=(0,1) in a 8x8 block this coefficient is discarded.
  2: If there are two coefficients with (RUN,level)=(1,1) and (4,1) the coefficients are also discarded
  sum_cnt_nonz is the accumulation of coeff_cost over a whole macro block.  If sum_cnt_nonz is 5 or less for the whole MB,
  all nonzero coefficients are discarded for the MB and the reconstructed block is set equal to the prediction.
*///Lou

/*lgp*dct*/

  if (!skipped && coeff_cost <= _LUMA_COEFF_COST_)
  {
    coeff_cost  = 0;
    (*cbp)     &=  (63 - cbp_mask);
    (*cbp_blk) &= ~(51 << (4*block8x8-2*(block8x8%2)));

    for (i=mb_x; i<mb_x+8; i++)
    for (j=mb_y; j<mb_y+8; j++)
    {
      imgY[img->pix_y+j][img->pix_x+i] = img->mpr[i][j];
    }
  }

  return coeff_cost;
}


void                                       //  ==> coefficient cost
LumaPrediction (int  *cbp,         //  --> cbp (updated according to processed 8x8 luminance block)
                       int  *cbp_blk,     //  --> block cbp (updated according to processed 8x8 luminance block)
                       int  block8x8,     // <--  block number of 8x8 block
                       int  fw_mode,      // <--  forward  prediction mode (1-7, 0=DIRECT)
                       int  bw_mode,      // <--  backward prediction mode (1-7, 0=DIRECT)
                       int  fw_refframe,  // <--  reference frame for forward prediction
                       int  bw_refframe   // <--  reference frame for backward prediction
                       )
{
  int    block_y, block_x, pic_pix_y, pic_pix_x, cbp_blk_mask;
  int    coeff_cost = 0;
  int    mb_y       = (block8x8 / 2) << 3;
  int    mb_x       = (block8x8 % 2) << 3;
  int    cbp_mask   = 1 << block8x8;
  int    bxx, byy;                   // indexing curr_blk
  int    scrFlag = 0;                // 0=noSCR, 1=strongSCR, 2=jmSCR
  byte** imgY_original = imgY_org;
  int  pix_x    = img->pix_x;
  int  pix_y    = img->pix_y;
	Macroblock* currMB = &img->mb_data[img->current_mb_nr];
  int    skipped    = (fw_mode == 0 && bw_mode == 0 && (img->type!=B_IMG));
  int  incr_y=1,off_y=0; /*lgp*/

  if (img->type==B_IMG)
    scrFlag = 1;
  
  //===== loop over 4x4 blocks =====
  for (byy=0, block_y=mb_y; block_y<mb_y+8; byy+=4, block_y+=4)
  {
    
	pic_pix_y = pix_y + mb_y;/*lgp*/

    for (bxx=0, block_x=mb_x; block_x<mb_x+8; bxx+=4, block_x+=4)
    {
      pic_pix_x = pix_x + block_x;

      cbp_blk_mask = (block_x>>2) + block_y;
      //===== prediction of 4x4 block =====
      LumaPrediction4x4 (block_x, block_y, fw_mode, bw_mode, fw_refframe, bw_refframe);
    }
  }

  return ;
}

/*
*************************************************************************
* Function:Set mode parameters and reference frames for an 8x8 block
* Input:
* Output:
* Return: 
* Attention:
*************************************************************************
*/

void
SetModesAndRefframe (int b8, int* fw_mode, int* bw_mode, int* fw_ref, int* bw_ref)
{
  Macroblock* currMB = &img->mb_data[img->current_mb_nr];
  int         j      = (b8/2);
  int         i      = (b8%2);
  int**     frefarr = refFrArr;   // For MB level field/frame coding
  int**     fw_refarr = fw_refFrArr;  // For MB level field/frame coding
  int**     bw_refarr = bw_refFrArr;  // For MB level field/frame coding
  int     block_x = img->block_x; 
  int     block_y = img->block_y; // For MB level field/frame coding

  *fw_mode = *bw_mode = *fw_ref = *bw_ref = -1;

  if (img->type!=B_IMG)
  {
    *fw_ref = frefarr[(block_y>>1)+j][(block_x>>1)+i];
    *bw_ref = 0;
    *bw_mode  = 0;
    *fw_mode  = currMB->b8mode[b8];
  }
  else
  {
    if (currMB->b8pdir[b8]==-1)
    {
      *fw_ref   = -1;
      *bw_ref   = -1;
      *fw_mode  =  0;
      *bw_mode  =  0;
    }
    else if (currMB->b8pdir[b8]==0)
    {
      *fw_ref   = fw_refarr[(block_y>>1)+j][(block_x>>1)+i];
      *bw_ref   = 0;
      *fw_mode  = currMB->b8mode[b8];
      *bw_mode  = 0;
    }
    else if (currMB->b8pdir[b8]==1)
    {
      *fw_ref   = 0;
      *bw_ref   = bw_refarr[(block_y>>1)+j][(block_x>>1)+i];
      *fw_mode  = 0;
      *bw_mode  = currMB->b8mode[b8];
    }
    else
    {
      *fw_ref   = fw_refarr[(block_y>>1)+j][(block_x>>1)+i];
      *bw_ref   = bw_refarr[(block_y>>1)+j][(block_x>>1)+i];
      *fw_mode  = currMB->b8mode[b8];
      *bw_mode  = currMB->b8mode[b8];

      if (currMB->b8mode[b8]==0) // direct
      {

        if (img->type==B_IMG)
        {
          //sw
          *fw_ref = 0;// max(0,frefarr[(block_y>>1)+j][(block_x>>1)+i]);
          *bw_ref = 0;
        }
        else
        {
          *fw_ref = max(0,frefarr[(block_y>>1)+j][(block_x>>1)+i]);
          *bw_ref = 0;
        }
      }
    }
  }
}

/*
*************************************************************************
* Function:Residual Coding of a Luma macroblock (not for intra)
* Input:
* Output:
* Return: 
* Attention:
*************************************************************************
*/

void LumaResidualCoding ()
{
  int i,j,block8x8;
  int fw_mode, bw_mode, refframe;
  int sum_cnt_nonz;
  Macroblock *currMB = &img->mb_data[img->current_mb_nr];
  int incr_y=1,off_y=0;/*lgp*/
  int stage_block8x8_pos=0;/*lgp*/
  int skipped;/*lgp*dct*/
  int sad1 , sad2 ;
  byte** imgY_original = imgY_org;

  currMB->cbp     = 0 ;
  currMB->cbp_blk = 0 ;
  sum_cnt_nonz    = 0 ;

	// !! start shenyanfei 
	if((img->LumVarFlag == 1) && (img->mb_weighting_flag == 1)){
		for (block8x8=stage_block8x8_pos; block8x8<4; block8x8++){
			int bw_ref;
			SetModesAndRefframe (block8x8, &fw_mode, &bw_mode, &refframe, &bw_ref);
			LumaPrediction(&(currMB->cbp), &(currMB->cbp_blk), block8x8,fw_mode, bw_mode, refframe, bw_ref);
         	}
		sad1 = sad2 = 0 ;
		for (j=0; j < MB_BLOCK_SIZE; j++)
		{
			for (i=0; i < MB_BLOCK_SIZE; i++){
				sad1 += abs(imgY_original[img->pix_y+j][img->pix_x+i] -img->mpr[i][j]);
				sad2 += abs(imgY_original[img->pix_y+j][img->pix_x+i] -img->mpr_weight[i][j]);
			}
		}
		if(sad1 > sad2){
			img->weighting_prediction = 1 ;
		}
		else{
			img->weighting_prediction = 0 ;
		}
	}
	// !! end shenyanfei

  currMB->cbp     = 0 ;
  currMB->cbp_blk = 0 ;
  sum_cnt_nonz    = 0 ;

  for (block8x8=stage_block8x8_pos/*lgp*/; block8x8<4; block8x8++)
  {
    int bw_ref;

    SetModesAndRefframe (block8x8, &fw_mode, &bw_mode, &refframe, &bw_ref);

    skipped    = (fw_mode == 0 && bw_mode == 0 && (img->type!=B_IMG));
    sum_cnt_nonz += LumaResidualCoding8x8 (&(currMB->cbp), &(currMB->cbp_blk), block8x8,fw_mode, bw_mode, refframe, bw_ref);
  }

  if (sum_cnt_nonz <= 5)
  {
     currMB->cbp     &= 0xfffff0 ;
     currMB->cbp_blk &= 0xff0000 ;
     for (i=0; i < MB_BLOCK_SIZE; i++)
     {
       for (j=0; j < MB_BLOCK_SIZE; j++)
       {
         imgY[img->pix_y+j][img->pix_x+i]=img->mpr[i][j];
       }
     }
   }
}

/*
*************************************************************************
* Function: Predict one component of a chroma 4x4 block
* Input:
* Output:
* Return: 
* Attention:
*************************************************************************
*/

void
OneComponentChromaPrediction4x4 (int*     mpred,      //  --> array to store prediction values
                                 int      pix_c_x,    // <--  horizontal pixel coordinate of 4x4 block
                                 int      pix_c_y,    // <--  vertical   pixel coordinate of 4x4 block
                                 int***** mv,         // <--  motion vector array
                                 int      ref,        // <--  reference frame parameter (0.../ -1: backward)
                                 int      blocktype,  // <--  block type
                                 int      uv,
                                 int      directforword)         // <--  chroma component
{
  int     i, j, ii, jj, ii0, jj0, ii1, jj1, if0, if1, jf0, jf1;
  int     incr;
  int*    mvb;
  int     refframe  = (ref<0 ?      0 :    ref);
  pel_t** refimage;
  int     je        = pix_c_y + 4;
  int     ie        = pix_c_x + 4;
  int     f1        = 8 , f2=f1-1, f3=f1*f1, f4=f3>>1;
  int     s1        = 3;
  int     img_pic_c_x = img->pix_c_x;
  int     img_pic_c_y = img->pix_c_y;
  int     scale   = 1;
  int field_mode;
  int     fpred = ref < 0 ? 0: 1;

  //xyji 11.27
	if (!img->picture_structure) // field coding
	{
		if (img->type==B_IMG)
			refframe = ref<0 ? ref+2 : ref;
	}

  field_mode = (!img->picture_structure);


  incr = 1;
  if(img->type==B_IMG && !img->picture_structure)
    incr = 2;

  ref = (img->type==B_IMG) ? ref+incr : ref;

  refimage  = mcef [ref][uv];

  field_mode = (!img->picture_structure);

		
  for (j=pix_c_y; j<je; j++)
		for (i=pix_c_x; i<ie; i++)
		{
			mvb  = mv [(i-img_pic_c_x)>>2][(j-img_pic_c_y)>>2][refframe][blocktype];
			ii   = (i<<s1) + mvb[0];
			jj   = (j<<s1) + mvb[1];
	
			ii0  = max (0, min (img->width_cr -1, ii>>s1     ));
			jj0  = max (0, min (img->height_cr/scale-1, jj>>s1     ));    // For MB level field/frame -- scale chroma height by 2
			ii1  = max (0, min (img->width_cr -1, (ii+f2)>>s1));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -