⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 textpattern.java

📁 MG4J (Managing Gigabytes for Java) is a free full-text search engine for large document collections
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
package it.unimi.dsi.mg4j.util;import it.unimi.dsi.fastutil.chars.CharList;/*		  * MG4J: Managing Gigabytes for Java * * Copyright (C) 2003-2007 Paolo Boldi and Sebastiano Vigna  * *  This library is free software; you can redistribute it and/or modify it *  under the terms of the GNU Lesser General Public License as published by the Free *  Software Foundation; either version 2.1 of the License, or (at your option) *  any later version. * *  This library is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License *  for more details. * *  You should have received a copy of the GNU Lesser General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * *//** QuickSearch matching against a constant string. * * <P>The {@linkplain java.util.regex regular expression facilities} of the Java API * are a powerful tool; however, when searching for a <em>constant</em> pattern * many algorithms can increase of orders magnitude the speed of a search. * * <P>This class provides constant-pattern text search facilities by * implementing Sunday's QuickSearch (a simplified but very effective variant * of the Boyer&mdash;Moore search algorithm) using <a href="http://vigna.dsi.unimi.it/papers.php#BoVMSJ"><em>compact * approximators</em></A>, a randomised data structure that can accomodate in a * small space (but in an approximated way) the bad-character shift table of a * large alphabet such as Unicode. * * <P>Since a large subset of US-ASCII is used in all languages (e.g., * whitespace, punctuation, etc.), this class caches separately the shifts for * the first 128 Unicode characters, resulting in  very good performance even on  * text in pure US-ASCII. * * <P>Note that the {@link MutableString#indexOf(MutableString) indexOf} * methods of {@link MutableString} use a even more simplified variant of * QuickSearch which is less efficient, but has a smaller setup time and does * not generate any object. The search facilities provided by this class are * targeted at searches on very large texts, repeated searches with the same * pattern, and case-insensitive searches. * * <P>Instances of this class are immutable and thread-safe. * * <P>This class is experimental: APIs could change with the next release. * * @author Sebastiano Vigna * @author Paolo Boldi * @since 0.6 * @deprecated Moved to <code>dsiutils</code>. */@Deprecatedpublic class TextPattern implements java.io.Serializable, CharSequence {	private static final long serialVersionUID = 1L;	/** Enables case-insensitive matching.	 *	 * <P>By default, case-insensitive matching assumes that only characters in	 * the ASCII charset are being matched. Unicode-aware case-insensitive	 * matching can be enabled by specifying the UNICODE_CASE flag in	 * conjunction with this flag.	 *	 * <P>Case-insensitivity involves a performance drop.	 */	public final static int CASE_INSENSITIVE = 1;	/** Enables Unicode-aware case folding.	 *	 * <P>When this flag is specified then case-insensitive matching, when enabled	 * by the CASE_INSENSITIVE flag, is done in a manner consistent with the	 * Unicode Standard. By default, case-insensitive matching assumes that	 * only characters in the ASCII charset are being matched.	 *	 * <P>Unicode-aware case folding is very expensive (two method calls per	 * examined non-ASCII character).	 */	public final static int UNICODE_CASE = 2;	/** The square of the golden ratio multiplied by 2<sup>32</sup>. */	private final static int PHI2 = 1640531525;	/** The pattern backing array. */	protected char[] pattern;	/** The compact approximator containing the bad-character shifts; its lenght is a power of 2. */	private transient int[] badCharShift;	/** The bad-character shift for US-ASCII. */	private transient int[] asciiBadCharShift = new int[ 128 ];	/** A bit mask equal to the length of {@link #badCharShift} minus 1. */	private transient int mask;	/** A cached shift value for computing one of the hashes. It is equal to 16 minus the base 2 logarithm of the length of {@link #badCharShift}. */	private transient int hashShift;	/** Whether this pattern is case sensitive. */	private boolean caseSensitive;	/** Whether this pattern uses optimised ASCII downcasing (as opposed to the correct Unicode downcasing procedure). */	private boolean asciiCase;	/** Creates a new case-sensitive {@link TextPattern} object that can be used to search for the given pattern.	 *	 * @param pattern the constant pattern to search for.	 */	public TextPattern( final CharSequence pattern ) {		  this( pattern, 0 );	}	/** Creates a new {@link TextPattern} object that can be used to search for the given pattern.	 *	 * @param pattern the constant pattern to search for.	 * @param flags a bit mask that may include {@link #CASE_INSENSITIVE} and {@link #UNICODE_CASE}.	 */	public TextPattern( final CharSequence pattern, final int flags ) {		this.pattern = new char[ pattern.length() ];		MutableString.getChars( pattern, 0, this.pattern.length, this.pattern, 0 );		caseSensitive = ( flags & CASE_INSENSITIVE ) == 0;		asciiCase = ( flags & UNICODE_CASE ) == 0;		if ( ! caseSensitive ) {			int i = this.pattern.length;			if ( asciiCase ) while( i-- != 0 ) this.pattern[ i ] = asciiToLowerCase( this.pattern[ i ] );			else while( i-- != 0 ) this.pattern[ i ] = unicodeToLowerCase( this.pattern[ i ] );		}		compile();	}	/** Returns whether this pattern is case insensitive.	 *	 */	public boolean caseInsensitive() {		return ! caseSensitive;	}	/** Returns whether this pattern uses Unicode case folding.	 *	 */	public boolean unicodeCase() {		return ! asciiCase;	}	/** A fast, optimised method to lower case just ASCII letters.	 *	 * @param c a character.	 * @return the character <code>c</code>, downcased if it lies between <samp>A</samp> and <samp>Z</samp>.	 */	private static char asciiToLowerCase( final char c ) {		return c >= 'A' && c <= 'Z' ? (char)( c + 32 ) : c;	}	/** A method to downcase correctly Unicode characters optimised for ASCII letters.	 *	 * @param c a character.	 * @return the character <code>c</code>, downcased.	 */	private static char unicodeToLowerCase( final char c ) {		if ( c < 128 ) return c >= 'A' && c <= 'Z' ? (char)( c + 32 ) : c;		return Character.toLowerCase( Character.toUpperCase( c ) );	}	private static final int MIN_COUNT = 8;	/** Fills the search data structures using the pattern contained in {@link #pattern}. */	private void compile() {		final char[] p = pattern;		final int n = p.length;		int[] s = asciiBadCharShift;		char c;		// We make two passes on the pattern, so to approximate first the number of non-US-ASCII characters.		int h, i, j = 0, k = 0, l;		int[] max = new int[ MIN_COUNT ];		i = s.length;		while( i-- != 0 ) s[ i ] = n;		i = MIN_COUNT;		while( i-- != 0 ) max[ i ] = Integer.MAX_VALUE;		i = n;		while( i-- != 0 ) {			c = p[ j++ ];			if ( c < 128 ) s[ c ] = i;			else {				k++;				/* Bar-Yossef-Jayram-Kumar-Sivakumar-Trevisan's improvement on				Flajolet-Martin's algorithm for approximating the number of				distinct elements in a stream. We map each character with a				hash function on the unit interval, keep track of the smallest				MIN_COUNT elements, and then approximate the number of distinct				characters with MIN_COUNT divided by the largest element we				have (of course, everything is done in fixed point arithmetic				on the interval 0-2^32). If the approximation is less than the				number of characters, we use it. */				h = c * PHI2;				l = MIN_COUNT;				while( l-- != 0 ) if ( h > max[ l ] ) break;				if ( ++l < MIN_COUNT && h != max[ l ] ) {					System.arraycopy( max, l , max, l + 1, MIN_COUNT - l - 1 );					max[ l ] = h;				}			}		}		//System.err.println( k );		//System.err.println( (int)( MIN_COUNT * 0x100000000L / ( 0x80000000L + M[ MIN_COUNT - 1 ] ) ) );		k = Math.min( k, (int)( MIN_COUNT * 0x100000000L / ( 0x80000000L + max[ MIN_COUNT - 1 ] ) ) );		/* We do not use less than 2^7 entries, so to compensate the setup		overhead with a more precise approximator for very small patterns. If,		however, there are no non-US-ASCII characters, we use a single-bucket		approximator (so to avoid special cases in the algorithm). In any case,		we do not use approximators with more than 2^16 entries. */		final int log2m = k == 0 ? 0 : Math.min( Math.max( Fast.mostSignificantBit( k * 3 ) + 1, 7 ), 16 );		final int m = ( 1 << log2m ) - 1;		final int hs = 16 - log2m;		/* For the characters outside Unicode, we build a compact approximator		with two hash functions h_0 and h_1. The approximator stores a function		f from the character set to integers in a table s. The value of the		function on c can be obtained by maximising the values s[h_0(c)] and		s[h_1(c)]. When storing a value, instead, we minimise s[h_0(c)] and		s[h_1(c)] with f(c). As a result, the value stored is smaller than or		equal to the actual value f(c). By tuning the size of s and the number		of hash functions one can get a desired error precision. */		s =  new int[ m + 1 ];		i = m + 1;		while( i-- != 0 ) s[ i ] = n;		i = n;		j = 0;		while( i-- != 0 ) {			c = p[ j++ ];			if ( c >= 128 ) {				s[ c * c & m ] = i;				s[ ( c * PHI2 ) >> hs & m ] = i;			}		}				this.badCharShift = s;		this.mask = m;		this.hashShift = hs;		/*		for( i = 0; i <= m; i++ ) System.err.print( "" + s[ i ] + ", " );		System.err.println();		for( c = 'a'; c <= 'z'; c++ ) System.err.print( c + ":" + Math.max( s[ c * c & m ], s[ ( c * PHI2 ) >> hs & m ] ) + ", " );		System.err.println();		for( c = 'A'; c <= 'Z'; c++ ) System.err.print( c + ":" + Math.max( s[ c * c & m ], s[ ( c * PHI2 ) >> hs & m ] ) + ", " );		System.err.println();		MutableString msp = new MutableString( pattern );		for( c = 'a'; c <= 'z'; c++ ) if ( msp.indexOf( c ) == -1 && Math.max( s[ c * c & m ], s[ ( c * PHI2 ) >> hs & m ] ) != n ) 			System.err.println( c + ":" + Math.max( s[ c * c & m ], s[ ( c * PHI2 ) >> hs & m ] ) + ", " );		for( c = 'A'; c <= 'Z'; c++ ) if ( msp.indexOf( c ) == -1 && Math.max( s[ c * c & m ], s[ ( c * PHI2 ) >> hs & m ] ) != n ) 			System.err.println( c + ":" + Math.max( s[ c * c & m ], s[ ( c * PHI2 ) >> hs & m ] ) + ", " );		*/	}	public int length() {		return pattern.length;	}	public char charAt( final int i ) {		return pattern[ i ];	}	public CharSequence subSequence( final int from, final int to ) {		return new MutableString( pattern, from, to - from + 1 );	}    /** Returns the index of the first occurrence of this one-character pattern      * in the specified character array, starting at the specified index. 	 *	 * <P>This method is a fallback for searches on one-character patterns.     *     * @param array the character array to look in.     * @param from the index from which the search must start.     * @param to the index at which the search must end.     * @return the index of the first occurrence of this pattern or     * <code>-1</code>, if this pattern never appears with index greater than     * or equal to <code>from</code>.     */    private int indexOf( final char[] array, final int from, final int to ) {		final char[] a = array;		final int c = pattern[ 0 ];		int i = from < 0 ? -1 : from - 1;		if ( caseSensitive ) {			while( ++i < to ) if ( a[ i ] == c ) return i;			return -1;		}		else if ( asciiCase ) {			while( ++i < to ) if ( asciiToLowerCase( a[ i ] ) == c ) return i;			return -1;		}		else {			while( ++i < to ) if ( unicodeToLowerCase( a[ i ] ) == c ) return i;			return -1;		}    }    /** Returns the index of the first occurrence of this one-character pattern     * in the specified character sequence, starting at the specified index. 	 *	 * <P>This method is a fallback for searches on one-character patterns.     *     * @param s the character sequence to look in.     * @param from the index from which the search must start.     * @return the index of the first occurrence of this pattern or     * <code>-1</code>, if the this pattern never appears with index greater than     * or equal to <code>from</code>.     */    private int indexOf( final CharSequence s, final int from, final int to ) {		final int c = pattern[ 0 ];		int i = from < 0 ? -1 : from - 1;		if ( caseSensitive ) {			while( ++i < to ) if ( s.charAt( i ) == c ) return i;			return -1;		}		else if ( asciiCase ) {			while( ++i < to ) if ( asciiToLowerCase( s.charAt( i ) ) == c ) return i;			return -1;		}		else {			while( ++i < to ) if ( unicodeToLowerCase( s.charAt( i ) ) == c ) return i;			return -1;		}    }    /** Returns the index of the first occurrence of this one-character pattern      * in the specified byte array, seen as an ISO-8859-1 string,      * starting at the specified index. 	 *	 * <P>This method is a fallback for searches on one-character patterns.     *     * @param array the byte array to look in.     * @param from the index from which the search must start.     * @return the index of the first occurrence of this pattern or     * <code>-1</code>, if this pattern never appears with index greater than     * or equal to <code>from</code>.     */    private int indexOf( final byte[] array, final int from, final int to ) {		final byte[] a = array;		final int c = pattern[ 0 ];		int i = from < 0 ? -1 : from - 1;		if ( caseSensitive ) {			while( ++i < to ) if ( ( a[ i ] & 0xFF ) == c ) return i;			return -1;		}		else {			while( ++i < to ) if ( asciiToLowerCase( (char)( a[ i ] & 0xFF ) ) == c ) return i;			return -1;		}    }    /** Returns the index of the first occurrence of this pattern in the given character array.	 *     * @param array the character array to look in.     * @return the index of the first occurrence of this pattern contained in the	 * given array, or <code>-1</code>, if the pattern cannot be found.	 */	public int search( final char[] array ) {		return search( array, 0, array.length );	}    /** Returns the index of the first occurrence of this pattern in the given character array starting from a given index. 	 *     * @param array the character array to look in.     * @param from the index from which the search must start.     * @return the index of the first occurrence of this pattern contained in the	 * subarray starting from <code>from</code> (inclusive), or	 * <code>-1</code>, if the pattern cannot be found.	 */	public int search( char[] array, int from ) {		return search( array, from, array.length );	}    /** Returns the index of the first occurrence of this pattern in the given character array between given indices. 	 *     * @param a the character array to look in.     * @param from the index from which the search must start.     * @param to the index at which the search must end.     * @return the index of the first occurrence of this pattern contained in the	 * subarray starting from <code>from</code> (inclusive) up to <code>to</code>	 * (exclusive) characters, or <code>-1</code>, if the pattern cannot be found.	 */	public int search( final char[] a, final int from, final int to ) {		final int n = pattern.length;		if ( n == 0 ) return from > to ? to : ( from < 0 ? 0 : from );		if ( n == 1 ) return indexOf( a, from, to );		final char[] p = pattern;		final char last = p[ n - 1 ];		final int m1 = to - 1;		final int[] shift = badCharShift;		final int[] asciiShift = asciiBadCharShift;		final int m = mask;		final int hs = hashShift;		int i = ( from < 0 ? 0 : from ) + n - 1, j, k;		char c;		if ( caseSensitive ) {			while ( i < m1 ) {				if ( a[ i ] == last ) {					j = n - 1;					k = i;					while( j-- != 0 && a[ --k ] == p[ j ] );					if ( j < 0 ) return k;				}				if ( ( c = a[ ++i ]  ) < 128 ) i += asciiShift[ c ];				else {					j = shift[ c * c & m ];					k = shift[ ( c * PHI2 ) >> hs & m ];					i += j > k ? j : k;				}			}						if ( i == m1 ) {				j = n;				while( j-- != 0 && a[ i-- ] == p[ j ] );				if ( j < 0 ) return i + 1;			}			return -1;		}		else if ( asciiCase ) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -