⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme.html

📁 CoForest是一种半监督算法
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<title>Class coforest.CoForest</title>
<meta name="generator" content="Namo WebEditor v3.0">
</head>

<body bgcolor="white" text="black" link="blue" vlink="purple" alink="red">

<h2>&nbsp;<br>
Class CoForest</h2>
<table border="0" width="100%" id="table1">
    <tr>
        <td width="139" align="left" valign="top"><p><font size="3"><b>Description:</b></font><font
             size="3"> </font><span style="FONT-WEIGHT: 400"><font size="3">&nbsp;</font></span></td>
        <td width="1076"><p>CoForest is a semi-supervised algorithm, which exploits 
            the power of ensemble learning and large amount of unlabeled data 
            available to produce hypothesis with better performance.</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p>&nbsp;</td>
        <td width="1076"><p>&nbsp;</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p><font size="3"><b>Reference:</b></font></td>
        <td width="1076"><p>M. Li and Z.-H. Zhou. <u>Improve computer-aided 
            diagnosis with machine learning techniques using undiagnosed samples</u>. 
            <i>IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems 
            and Humans</i>, 2007, 37(6).</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p>&nbsp;</td>
        <td width="1076"><p>&nbsp;</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p><font size="3"><b>ATTN:</b></font><span
             style="FONT-WEIGHT: 400"><font size="3">&nbsp;&nbsp;</font></span></td>
        <td width="1076"><p><span style="font-weight: 400"><font size="3">This 
            package is free for academic usage. You can run it at your own risk. 
            For other purposes, please contact Prof. Zhi-Hua Zhou </font></span><span
             style="font-weight: 400"><a href="mailto:(zhouzh@nju.edu.cn"><font
             size="3">(zhouzh@nju.edu.cn</font></a></span><span style="font-weight: 400"><font
             size="3">).</font></span></td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p>&nbsp;</td>
        <td width="1076"><p>&nbsp;</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p><font size="3"><b>Requirement:</b></font></td>
        <td width="1076"><p><span style="FONT-WEIGHT: 400"><font size="3">To 
            use this package, the whole </font></span><a href="http://www.cs.waikato.ac.nz/ml/weka/"><font
             face="Times New Roman">WEKA</font></a><font face="Times New Roman"> 
            </font><span style="FONT-WEIGHT: 400"><font size="3">&nbsp;environment 
            (ver 3.4) must be available. Refer: I.H. Witten and E. Frank. </font></span><span
             style="FONT-WEIGHT: 400"><font size="3"><i>Data Mining: Practical 
            Machine Learning Tools and Techniques with&nbsp;Java Implementations</i></font></span><span
             style="FONT-WEIGHT: 400"><font size="3">. Morgan Kaufmann, San 
            Francisco, CA, 2000.</font></span></td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p>&nbsp;</td>
        <td width="1076"><p>&nbsp;</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p><font size="3"><b>Data 
            format:</b></font></td>
        <td width="1076"><p><span style="font-weight: 400"><font size="3">Both 
            the input and output formats are the same as those used by WEKA.</font></span></td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p>&nbsp;</td>
        <td width="1076"><p>&nbsp;</td>
    </tr>
    <tr>
        <td width="139" align="left" valign="top"><p><font size="3"><b>ATTN2: 
            </b></font></td>
        <td width="1076"><p><span style="font-weight: 400"><font size="3">This 
            package was developed by Mr. Ming Li </font></span><span style="font-weight: 400"><a href="mailto:(lim@lamda.nju.edu.cn"><font
             size="3">(lim@lamda.nju.edu.cn</font></a></span><span style="font-weight: 400"><font
             size="3">). This ReadMe file roughly explains the codes. For any 
            problem concerning the code, please feel free to contact Mr. Li.</font></span></p>
            <p>&nbsp;</td>
    </tr>
</table>
<dl>
    <dt><font size="4">public class </font><font size="4"><b>CoForest</b></font><font
     size="4"> </font>
</dl>
<table border cellpadding="3" cellspacing="0" width="100%">
    <tr>
        <td bgcolor="#CCCCFF"><p><font size="5"><b>Field Detail</b></font><font
             size="5"> </font></td>
    </tr>
</table>
<h3><a name="m_classifiers">m_classifiers</a></h3>
<pre>protected weka.classifiers.Classifier[] <b>m_classifiers</b></pre>
<dl>
    <dd>Random Forest 
</dl>
<dl>
    <dd><hr> 
</dl>
<h3>m_numClassifiers</h3>
<pre>protected int <b>m_numClassifiers</b></pre>
<dl>
    <dd>The number component 
</dl>
<dl>
    <dd><hr> 
</dl>
<h3>m_seed</h3>
<pre>protected int <b>m_seed</b></pre>
<dl>
    <dd>The random seed 
</dl>
<dl>
    <dd><hr> 
</dl>
<h3>m_numFeatures</h3>
<pre>protected int <b>m_numFeatures</b></pre>
<dl>
    <dd>Number of features to consider in random feature selection. If less 
    than 1 will use int(logM+1) ) 
</dl>
<dl>
    <dd><hr> 
</dl>
<h3>m_KValue</h3>
<pre>protected int <b>m_KValue</b></pre>
<dl>
    <dd>Final number of features that were considered in last build. 
</dl>
<dl>
    <dd><hr> 
</dl>
<h3>m_threshold</h3>
<pre>protected double <b>m_threshold</b></pre>
<dl>
    <dd>confidence threshold 
</dl>
<dl>
    <dd><hr> 
</dl>
<table border cellpadding="3" cellspacing="0" width="100%">
    <tr>
        <td bgcolor="#CCCCFF"><p><font size="5"><b>Constructor Detail</b></font><font
             size="5"> </font></td>
    </tr>
</table>
<h3><a name="CoForest()">CoForest</a></h3>
<pre>public <b>CoForest</b>()</pre>
<dl>
    <dd>The constructor 
</dl>
<dl>
    <dd><hr> 
</dl>
<table border cellpadding="3" cellspacing="0" width="100%">
    <tr>
        <td bgcolor="#CCCCFF"><p><font size="5"><b>Method Detail</b></font><font
             size="5"> </font></td>
    </tr>
</table>
<h3><a name="setSeed(int)">setSeed</a></h3>
<pre>public void <b>setSeed</b>(int&nbsp;s)</pre>
<dl>
    <dd>Set the seed for initiating the random object used inside this class 
    
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>s</code> - int -- The seed 
</dl>
<p><hr> </p>
<h3>setNumClassifiers</h3>
<pre>public void <b>setNumClassifiers</b>(int&nbsp;n)</pre>
<dl>
    <dd>Set the number of trees used in Random Forest. 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>s</code> - int -- Value to assign to numTrees. 
</dl>
<p><hr> </p>
<h3>getNumClassifiers</h3>
<pre>public int <b>getNumClassifiers</b>()</pre>
<dl>
    <dd>Get the number of trees used in Random Forest 
</dl>
<dl>
    <dt><b>Returns:</b> 
    <dd>int -- The number of trees. 
</dl>
<p><hr> </p>
<h3>setNumFeatures</h3>
<pre>public void <b>setNumFeatures</b>(int&nbsp;n)</pre>
<dl>
    <dd>Set the number of features to use in random selection. 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>n</code> - int -- Value to assign to m_numFeatures. 
</dl>
<p><hr> </p>
<h3>getNumFeatures</h3>
<pre>public int <b>getNumFeatures</b>()</pre>
<dl>
    <dd>Get the number of featrues to use in random selection. 
</dl>
<dl>
    <dt><b>Returns:</b> 
    <dd>int -- The number of features 
</dl>
<p><hr> </p>
<h3>resampleWithWeights</h3>
<pre>public final weka.core.Instances <b>resampleWithWeights</b>(weka.core.Instances&nbsp;data,
                                                     java.util.Random&nbsp;random,
                                                     boolean[]&nbsp;sampled)</pre>
<dl>
    <dd>Resample instances w.r.t the weight 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>data</code> - Instances -- the original data set 
    <dd><code>random</code> - Random -- the random object 
    <dd><code>sampled</code> - boolean[] -- the output parameter, indicating 
    whether the instance is sampled 
    <dt><b>Returns:</b> 
    <dd>Instances 
</dl>
<p><hr> </p>
<h3>distributionForInstance</h3>
<pre>public double[] <b>distributionForInstance</b>(weka.core.Instance&nbsp;inst)</pre>
<dl>
    <dd>Returns the probability label of a given instance 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>inst</code> - Instance -- The instance 
    <dt><b>Returns:</b> 
    <dd>double[] -- The probability label 
    <dt><b>Throws:</b> 
    <dd><code>Exception</code> - -- Some exception 
</dl>
<p><hr> </p>
<h3>classifyInstance</h3>
<pre>public double <b>classifyInstance</b>(weka.core.Instance&nbsp;inst)</pre>
<dl>
    <dd>Classifies a given instance 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>inst</code> - Instance -- The instance 
    <dt><b>Returns:</b> 
    <dd>double -- The class value 
    <dt><b>Throws:</b> 
    <dd><code>Exception</code> - -- Some Exception 
</dl>
<p><hr> </p>
<h3>buildClassifier</h3>
<pre>public void <b>buildClassifier</b>(weka.core.Instances&nbsp;labeled,
                            weka.core.Instances&nbsp;unlabeled)</pre>
<dl>
    <dd>Build the classifiers using Co-Forest algorithm 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>labeled</code> - Instances -- Labeled training set 
    <dd><code>unlabeled</code> - Instances -- unlabeled training set 
    <dt><b>Throws:</b> 
    <dd><code>Exception</code> - -- certain exception 
</dl>
<p><hr> </p>
<h3>isHighConfidence</h3>
<pre>protected boolean <b>isHighConfidence</b>(weka.core.Instance&nbsp;inst,
                                   int&nbsp;idExcluded)</pre>
<dl>
    <dd>To judege whether the confidence for a given instance of H* is high 
    enough, which is affected by the onfidence threshold. Meanwhile, if the 
    example is the confident one, assign label to it and weigh the example with 
    the confidence 
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>inst</code> - Instance -- The instance 
    <dd><code>idExcluded</code> - int -- the index of the individual should 
    be excluded from H* 
    <dt><b>Returns:</b> 
    <dd>boolean -- true for high 
    <dt><b>Throws:</b> 
    <dd><code>Exception</code> - - some exception 
</dl>
<p><hr> </p>
<h3>main</h3>
<pre>public static void <b>main</b>(java.lang.String[]&nbsp;args)</pre>
<dl>
    <dd>The main method only for demonstrating the simple use of this package 
    
</dl>
<dl>
    <dt><b>Parameters:</b> 
    <dd><code>args</code> - String[] 
</dl>
<p><hr> </p>
</body>

</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -