📄 lbfgs.h
字号:
/* * C library of Limited memory BFGS (L-BFGS). * * Copyright (c) 1990, Jorge Nocedal * Copyright (c) 2007,2008,2009 Naoaki Okazaki * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *//* $Id: lbfgs.h 56 2009-02-28 09:41:21Z naoaki $ */#ifndef __LBFGS_H__#define __LBFGS_H__#ifdef __cplusplusextern "C" {#endif/*__cplusplus*//* * The default precision of floating point values is 64bit (double). */#ifndef LBFGS_FLOAT#define LBFGS_FLOAT 64#endif/*LBFGS_FLOAT*//* * Activate optimization routines for IEEE754 floating point values. */#ifndef LBFGS_IEEE_FLOAT#define LBFGS_IEEE_FLOAT 1#endif/*LBFGS_IEEE_FLOAT*/#if LBFGS_FLOAT == 32typedef float lbfgsfloatval_t;#elif LBFGS_FLOAT == 64typedef double lbfgsfloatval_t;#else#error "libLBFGS supports single (float; LBFGS_FLOAT = 32) or double (double; LBFGS_FLOAT=64) precision only."#endif/** * \addtogroup liblbfgs_api libLBFGS API * @{ * * The libLBFGS API. *//** * Return values of lbfgs(). * * Roughly speaking, a negative value indicates an error. */enum { /** L-BFGS reaches convergence. */ LBFGS_SUCCESS = 0, LBFGS_CONVERGENCE = 0, LBFGS_STOP, /** The initial variables already minimize the objective function. */ LBFGS_ALREADY_MINIMIZED, /** Unknown error. */ LBFGSERR_UNKNOWNERROR = -1024, /** Logic error. */ LBFGSERR_LOGICERROR, /** Insufficient memory. */ LBFGSERR_OUTOFMEMORY, /** The minimization process has been canceled. */ LBFGSERR_CANCELED, /** Invalid number of variables specified. */ LBFGSERR_INVALID_N, /** Invalid number of variables (for SSE) specified. */ LBFGSERR_INVALID_N_SSE, /** The array x must be aligned to 16 (for SSE). */ LBFGSERR_INVALID_X_SSE, /** Invalid parameter lbfgs_parameter_t::epsilon specified. */ LBFGSERR_INVALID_EPSILON, /** Invalid parameter lbfgs_parameter_t::past specified. */ LBFGSERR_INVALID_TESTPERIOD, /** Invalid parameter lbfgs_parameter_t::delta specified. */ LBFGSERR_INVALID_DELTA, /** Invalid parameter lbfgs_parameter_t::linesearch specified. */ LBFGSERR_INVALID_LINESEARCH, /** Invalid parameter lbfgs_parameter_t::max_step specified. */ LBFGSERR_INVALID_MINSTEP, /** Invalid parameter lbfgs_parameter_t::max_step specified. */ LBFGSERR_INVALID_MAXSTEP, /** Invalid parameter lbfgs_parameter_t::ftol specified. */ LBFGSERR_INVALID_FTOL, /** Invalid parameter lbfgs_parameter_t::gtol specified. */ LBFGSERR_INVALID_GTOL, /** Invalid parameter lbfgs_parameter_t::xtol specified. */ LBFGSERR_INVALID_XTOL, /** Invalid parameter lbfgs_parameter_t::max_linesearch specified. */ LBFGSERR_INVALID_MAXLINESEARCH, /** Invalid parameter lbfgs_parameter_t::orthantwise_c specified. */ LBFGSERR_INVALID_ORTHANTWISE, /** Invalid parameter lbfgs_parameter_t::orthantwise_start specified. */ LBFGSERR_INVALID_ORTHANTWISE_START, /** Invalid parameter lbfgs_parameter_t::orthantwise_end specified. */ LBFGSERR_INVALID_ORTHANTWISE_END, /** The line-search step went out of the interval of uncertainty. */ LBFGSERR_OUTOFINTERVAL, /** A logic error occurred; alternatively, the interval of uncertainty became too small. */ LBFGSERR_INCORRECT_TMINMAX, /** A rounding error occurred; alternatively, no line-search step satisfies the sufficient decrease and curvature conditions. */ LBFGSERR_ROUNDING_ERROR, /** The line-search step became smaller than lbfgs_parameter_t::min_step. */ LBFGSERR_MINIMUMSTEP, /** The line-search step became larger than lbfgs_parameter_t::max_step. */ LBFGSERR_MAXIMUMSTEP, /** The line-search routine reaches the maximum number of evaluations. */ LBFGSERR_MAXIMUMLINESEARCH, /** The algorithm routine reaches the maximum number of iterations. */ LBFGSERR_MAXIMUMITERATION, /** Relative width of the interval of uncertainty is at most lbfgs_parameter_t::xtol. */ LBFGSERR_WIDTHTOOSMALL, /** A logic error (negative line-search step) occurred. */ LBFGSERR_INVALIDPARAMETERS, /** The current search direction increases the objective function value. */ LBFGSERR_INCREASEGRADIENT,};/** * Line search algorithms. */enum { /** The default algorithm (MoreThuente method). */ LBFGS_LINESEARCH_DEFAULT = 0, /** MoreThuente method proposd by More and Thuente. */ LBFGS_LINESEARCH_MORETHUENTE = 0, /** Backtracking method with strong Wolfe condition. */ LBFGS_LINESEARCH_BACKTRACKING_STRONG = 1, /** Backtracking method with regular Wolfe condition. */ LBFGS_LINESEARCH_BACKTRACKING = 2, /** Backtracking method with regular Wolfe condition. */ LBFGS_LINESEARCH_BACKTRACKING_LOOSE = 2,};/** * L-BFGS optimization parameters. * Call lbfgs_parameter_init() function to initialize parameters to the * default values. */typedef struct { /** * The number of corrections to approximate the inverse hessian matrix. * The L-BFGS routine stores the computation results of previous \ref m * iterations to approximate the inverse hessian matrix of the current * iteration. This parameter controls the size of the limited memories * (corrections). The default value is \c 6. Values less than \c 3 are * not recommended. Large values will result in excessive computing time. */ int m; /** * Epsilon for convergence test. * This parameter determines the accuracy with which the solution is to * be found. A minimization terminates when * ||g|| < \ref epsilon * max(1, ||x||), * where ||.|| denotes the Euclidean (L2) norm. The default value is * \c 1e-5. */ lbfgsfloatval_t epsilon; /** * Distance for delta-based convergence test. * This parameter determines the distance, in iterations, to compute * the rate of decrease of the objective function. If the value of this * parameter is zero, the library does not perform the delta-based * convergence test. The default value is \c 0. */ int past; /** * Delta for convergence test. * This parameter determines the minimum rate of decrease of the * objective function. The library stops iterations when the * following condition is met: * (f' - f) / f < \ref delta, * where f' is the objective value of \ref past iterations ago, and f is * the objective value of the current iteration. * The default value is \c 0. */ lbfgsfloatval_t delta; /** * The maximum number of iterations. * The lbfgs() function terminates an optimization process with * ::LBFGSERR_MAXIMUMITERATION status code when the iteration count * exceedes this parameter. Setting this parameter to zero continues an * optimization process until a convergence or error. The default value * is \c 0. */ int max_iterations; /** * The line search algorithm. * This parameter specifies a line search algorithm to be used by the * L-BFGS routine. */ int linesearch; /** * The maximum number of trials for the line search. * This parameter controls the number of function and gradients evaluations * per iteration for the line search routine. The default value is \c 20. */ int max_linesearch; /** * The minimum step of the line search routine. * The default value is \c 1e-20. This value need not be modified unless * the exponents are too large for the machine being used, or unless the * problem is extremely badly scaled (in which case the exponents should * be increased). */ lbfgsfloatval_t min_step; /** * The maximum step of the line search. * The default value is \c 1e+20. This value need not be modified unless * the exponents are too large for the machine being used, or unless the * problem is extremely badly scaled (in which case the exponents should * be increased). */ lbfgsfloatval_t max_step; /** * A parameter to control the accuracy of the line search routine. * The default value is \c 1e-4. This parameter should be greater * than zero and smaller than \c 0.5. */ lbfgsfloatval_t ftol; /** * A parameter to control the accuracy of the line search routine. * The default value is \c 0.9. If the function and gradient * evaluations are inexpensive with respect to the cost of the * iteration (which is sometimes the case when solving very large * problems) it may be advantageous to set this parameter to a small * value. A typical small value is \c 0.1. This parameter shuold be * greater than the \ref ftol parameter (\c 1e-4) and smaller than * \c 1.0. */ lbfgsfloatval_t gtol; /** * The machine precision for floating-point values. * This parameter must be a positive value set by a client program to * estimate the machine precision. The line search routine will terminate * with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width * of the interval of uncertainty is less than this parameter. */ lbfgsfloatval_t xtol; /** * Coeefficient for the L1 norm of variables. * This parameter should be set to zero for standard minimization * problems. Setting this parameter to a positive value activates * Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which * minimizes the objective function F(x) combined with the L1 norm |x| * of the variables, {F(x) + C |x|}. This parameter is the coeefficient * for the |x|, i.e., C. As the L1 norm |x| is not differentiable at * zero, the library modifies function and gradient evaluations from * a client program suitably; a client program thus have only to return * the function value F(x) and gradients G(x) as usual. The default value * is zero. */ lbfgsfloatval_t orthantwise_c; /** * Start index for computing L1 norm of the variables. * This parameter is valid only for OWL-QN method * (i.e., \ref orthantwise_c != 0). This parameter b (0 <= b < N) * specifies the index number from which the library computes the * L1 norm of the variables x, * |x| := |x_{b}| + |x_{b+1}| + ... + |x_{N}| . * In other words, variables x_1, ..., x_{b-1} are not used for * computing the L1 norm. Setting b (0 < b < N), one can protect * variables, x_1, ..., x_{b-1} (e.g., a bias term of logistic * regression) from being regularized. The default value is zero. */ int orthantwise_start; /** * End index for computing L1 norm of the variables. * This parameter is valid only for OWL-QN method * (i.e., \ref orthantwise_c != 0). This parameter e (0 < e <= N) * specifies the index number at which the library stops computing the * L1 norm of the variables x, */ int orthantwise_end;} lbfgs_parameter_t;/** * Callback interface to provide objective function and gradient evaluations. * * The lbfgs() function call this function to obtain the values of objective * function and its gradients when needed. A client program must implement * this function to evaluate the values of the objective function and its * gradients, given current values of variables. * * @param instance The user data sent for lbfgs() function by the client. * @param x The current values of variables. * @param g The gradient vector. The callback function must compute * the gradient values for the current variables. * @param n The number of variables. * @param step The current step of the line search routine. * @retval lbfgsfloatval_t The value of the objective function for the current * variables. */typedef lbfgsfloatval_t (*lbfgs_evaluate_t)( void *instance, const lbfgsfloatval_t *x, lbfgsfloatval_t *g,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -