⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arithmetic_sse_double.h

📁 This library is a C port of the implementation of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L
💻 H
字号:
/* *      SSE2 implementation of vector oprations (64bit double). * * Copyright (c) 2007,2008,2009 Naoaki Okazaki * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. *//* $Id: arithmetic_sse_double.h 50 2009-02-16 15:14:23Z naoaki $ */#include <stdlib.h>#include <malloc.h>#include <memory.h>#if     1400 <= _MSC_VER#include <intrin.h>#endif/*1400 <= _MSC_VER*/#if     HAVE_EMMINTRIN_H#include <emmintrin.h>#endif/*HAVE_EMMINTRIN_H*/inline static void* vecalloc(size_t size){#ifdef	_MSC_VER    void *memblock = _aligned_malloc(size, 16);#else    void *memblock = memalign(16, size);#endif    if (memblock != NULL) {        memset(memblock, 0, size);    }    return memblock;}inline static void vecfree(void *memblock){#ifdef	_MSC_VER    _aligned_free(memblock);#else    free(memblock);#endif}#define fsigndiff(x, y) \    ((_mm_movemask_pd(_mm_set_pd(*(x), *(y))) + 1) & 0x002)#define vecset(x, c, n) \{ \    int i; \    __m128d XMM0 = _mm_set1_pd(c); \    for (i = 0;i < (n);i += 8) { \        _mm_store_pd((x)+i  , XMM0); \        _mm_store_pd((x)+i+2, XMM0); \        _mm_store_pd((x)+i+4, XMM0); \        _mm_store_pd((x)+i+6, XMM0); \    } \}#define veccpy(y, x, n) \{ \    int i; \    for (i = 0;i < (n);i += 8) { \        __m128d XMM0 = _mm_load_pd((x)+i  ); \        __m128d XMM1 = _mm_load_pd((x)+i+2); \        __m128d XMM2 = _mm_load_pd((x)+i+4); \        __m128d XMM3 = _mm_load_pd((x)+i+6); \        _mm_store_pd((y)+i  , XMM0); \        _mm_store_pd((y)+i+2, XMM1); \        _mm_store_pd((y)+i+4, XMM2); \        _mm_store_pd((y)+i+6, XMM3); \    } \}#define vecncpy(y, x, n) \{ \    int i; \    for (i = 0;i < (n);i += 8) { \        __m128d XMM0 = _mm_setzero_pd(); \        __m128d XMM1 = _mm_setzero_pd(); \        __m128d XMM2 = _mm_setzero_pd(); \        __m128d XMM3 = _mm_setzero_pd(); \        __m128d XMM4 = _mm_load_pd((x)+i  ); \        __m128d XMM5 = _mm_load_pd((x)+i+2); \        __m128d XMM6 = _mm_load_pd((x)+i+4); \        __m128d XMM7 = _mm_load_pd((x)+i+6); \        XMM0 = _mm_sub_pd(XMM0, XMM4); \        XMM1 = _mm_sub_pd(XMM1, XMM5); \        XMM2 = _mm_sub_pd(XMM2, XMM6); \        XMM3 = _mm_sub_pd(XMM3, XMM7); \        _mm_store_pd((y)+i  , XMM0); \        _mm_store_pd((y)+i+2, XMM1); \        _mm_store_pd((y)+i+4, XMM2); \        _mm_store_pd((y)+i+6, XMM3); \    } \}#define vecadd(y, x, c, n) \{ \    int i; \    __m128d XMM7 = _mm_set1_pd(c); \    for (i = 0;i < (n);i += 4) { \        __m128d XMM0 = _mm_load_pd((x)+i  ); \        __m128d XMM1 = _mm_load_pd((x)+i+2); \        __m128d XMM2 = _mm_load_pd((y)+i  ); \        __m128d XMM3 = _mm_load_pd((y)+i+2); \        XMM0 = _mm_mul_pd(XMM0, XMM7); \        XMM1 = _mm_mul_pd(XMM1, XMM7); \        XMM2 = _mm_add_pd(XMM2, XMM0); \        XMM3 = _mm_add_pd(XMM3, XMM1); \        _mm_store_pd((y)+i  , XMM2); \        _mm_store_pd((y)+i+2, XMM3); \    } \}#define vecdiff(z, x, y, n) \{ \    int i; \    for (i = 0;i < (n);i += 8) { \        __m128d XMM0 = _mm_load_pd((x)+i  ); \        __m128d XMM1 = _mm_load_pd((x)+i+2); \        __m128d XMM2 = _mm_load_pd((x)+i+4); \        __m128d XMM3 = _mm_load_pd((x)+i+6); \        __m128d XMM4 = _mm_load_pd((y)+i  ); \        __m128d XMM5 = _mm_load_pd((y)+i+2); \        __m128d XMM6 = _mm_load_pd((y)+i+4); \        __m128d XMM7 = _mm_load_pd((y)+i+6); \        XMM0 = _mm_sub_pd(XMM0, XMM4); \        XMM1 = _mm_sub_pd(XMM1, XMM5); \        XMM2 = _mm_sub_pd(XMM2, XMM6); \        XMM3 = _mm_sub_pd(XMM3, XMM7); \        _mm_store_pd((z)+i  , XMM0); \        _mm_store_pd((z)+i+2, XMM1); \        _mm_store_pd((z)+i+4, XMM2); \        _mm_store_pd((z)+i+6, XMM3); \    } \}#define vecscale(y, c, n) \{ \    int i; \    __m128d XMM7 = _mm_set1_pd(c); \    for (i = 0;i < (n);i += 4) { \        __m128d XMM0 = _mm_load_pd((y)+i  ); \        __m128d XMM1 = _mm_load_pd((y)+i+2); \        XMM0 = _mm_mul_pd(XMM0, XMM7); \        XMM1 = _mm_mul_pd(XMM1, XMM7); \        _mm_store_pd((y)+i  , XMM0); \        _mm_store_pd((y)+i+2, XMM1); \    } \}#define vecmul(y, x, n) \{ \    int i; \    for (i = 0;i < (n);i += 8) { \        __m128d XMM0 = _mm_load_pd((x)+i  ); \        __m128d XMM1 = _mm_load_pd((x)+i+2); \        __m128d XMM2 = _mm_load_pd((x)+i+4); \        __m128d XMM3 = _mm_load_pd((x)+i+6); \        __m128d XMM4 = _mm_load_pd((y)+i  ); \        __m128d XMM5 = _mm_load_pd((y)+i+2); \        __m128d XMM6 = _mm_load_pd((y)+i+4); \        __m128d XMM7 = _mm_load_pd((y)+i+6); \        XMM4 = _mm_mul_pd(XMM4, XMM0); \        XMM5 = _mm_mul_pd(XMM5, XMM1); \        XMM6 = _mm_mul_pd(XMM6, XMM2); \        XMM7 = _mm_mul_pd(XMM7, XMM3); \        _mm_store_pd((y)+i  , XMM4); \        _mm_store_pd((y)+i+2, XMM5); \        _mm_store_pd((y)+i+4, XMM6); \        _mm_store_pd((y)+i+6, XMM7); \    } \}#if     3 <= __SSE__/*    Horizontal add with haddps SSE3 instruction. The work register (rw)    is unused. */#define __horizontal_sum(r, rw) \    r = _mm_hadd_ps(r, r); \    r = _mm_hadd_ps(r, r);#else/*    Horizontal add with SSE instruction. The work register (rw) is used. */#define __horizontal_sum(r, rw) \    rw = r; \    r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(1, 0, 3, 2)); \    r = _mm_add_ps(r, rw); \    rw = r; \    r = _mm_shuffle_ps(r, rw, _MM_SHUFFLE(2, 3, 0, 1)); \    r = _mm_add_ps(r, rw);#endif#define vecdot(s, x, y, n) \{ \    int i; \    __m128d XMM0 = _mm_setzero_pd(); \    __m128d XMM1 = _mm_setzero_pd(); \    __m128d XMM2, XMM3, XMM4, XMM5; \    for (i = 0;i < (n);i += 4) { \        XMM2 = _mm_load_pd((x)+i  ); \        XMM3 = _mm_load_pd((x)+i+2); \        XMM4 = _mm_load_pd((y)+i  ); \        XMM5 = _mm_load_pd((y)+i+2); \        XMM2 = _mm_mul_pd(XMM2, XMM4); \        XMM3 = _mm_mul_pd(XMM3, XMM5); \        XMM0 = _mm_add_pd(XMM0, XMM2); \        XMM1 = _mm_add_pd(XMM1, XMM3); \    } \    XMM0 = _mm_add_pd(XMM0, XMM1); \    XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \    XMM0 = _mm_add_pd(XMM0, XMM1); \    _mm_store_sd((s), XMM0); \}#define vec2norm(s, x, n) \{ \    int i; \    __m128d XMM0 = _mm_setzero_pd(); \    __m128d XMM1 = _mm_setzero_pd(); \    __m128d XMM2, XMM3, XMM4, XMM5; \    for (i = 0;i < (n);i += 4) { \        XMM2 = _mm_load_pd((x)+i  ); \        XMM3 = _mm_load_pd((x)+i+2); \        XMM4 = XMM2; \        XMM5 = XMM3; \        XMM2 = _mm_mul_pd(XMM2, XMM4); \        XMM3 = _mm_mul_pd(XMM3, XMM5); \        XMM0 = _mm_add_pd(XMM0, XMM2); \        XMM1 = _mm_add_pd(XMM1, XMM3); \    } \    XMM0 = _mm_add_pd(XMM0, XMM1); \    XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \    XMM0 = _mm_add_pd(XMM0, XMM1); \    XMM0 = _mm_sqrt_pd(XMM0); \    _mm_store_sd((s), XMM0); \}#define vec2norminv(s, x, n) \{ \    int i; \    __m128d XMM0 = _mm_setzero_pd(); \    __m128d XMM1 = _mm_setzero_pd(); \    __m128d XMM2, XMM3, XMM4, XMM5; \    for (i = 0;i < (n);i += 4) { \        XMM2 = _mm_load_pd((x)+i  ); \        XMM3 = _mm_load_pd((x)+i+2); \        XMM4 = XMM2; \        XMM5 = XMM3; \        XMM2 = _mm_mul_pd(XMM2, XMM4); \        XMM3 = _mm_mul_pd(XMM3, XMM5); \        XMM0 = _mm_add_pd(XMM0, XMM2); \        XMM1 = _mm_add_pd(XMM1, XMM3); \    } \    XMM2 = _mm_set1_pd(1.0); \    XMM0 = _mm_add_pd(XMM0, XMM1); \    XMM1 = _mm_shuffle_pd(XMM0, XMM0, _MM_SHUFFLE2(1, 1)); \    XMM0 = _mm_add_pd(XMM0, XMM1); \    XMM0 = _mm_sqrt_pd(XMM0); \    XMM2 = _mm_div_pd(XMM2, XMM0); \    _mm_store_sd((s), XMM2); \}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -