📄 zmod.py
字号:
# module 'zmod'# Compute properties of mathematical "fields" formed by taking# Z/n (the whole numbers modulo some whole number n) and an # irreducible polynomial (i.e., a polynomial with only complex zeros),# e.g., Z/5 and X**2 + 2.## The field is formed by taking all possible linear combinations of# a set of d base vectors (where d is the degree of the polynomial).## Note that this procedure doesn't yield a field for all combinations# of n and p: it may well be that some numbers have more than one# inverse and others have none. This is what we check.## Remember that a field is a ring where each element has an inverse.# A ring has commutative addition and multiplication, a zero and a one:# 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x. Also, the distributive# property holds: a*(b+c) = a*b + b*c.# (XXX I forget if this is an axiom or follows from the rules.)import poly# Example N and polynomialN = 5P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2# Return x modulo y. Returns >= 0 even if x < 0.def mod(x, y): return divmod(x, y)[1]# Normalize a polynomial modulo n and modulo p.def norm(a, n, p): a = poly.modulo(a, p) a = a[:] for i in range(len(a)): a[i] = mod(a[i], n) a = poly.normalize(a) return a# Make a list of all n^d elements of the proposed field.def make_all(mat): all = [] for row in mat: for a in row: all.append(a) return alldef make_elements(n, d): if d == 0: return [poly.one(0, 0)] sub = make_elements(n, d-1) all = [] for a in sub: for i in range(n): all.append(poly.plus(a, poly.one(d-1, i))) return alldef make_inv(all, n, p): x = poly.one(1, 1) inv = [] for a in all: inv.append(norm(poly.times(a, x), n, p)) return invdef checkfield(n, p): all = make_elements(n, len(p)-1) inv = make_inv(all, n, p) all1 = all[:] inv1 = inv[:] all1.sort() inv1.sort() if all1 == inv1: print 'BINGO!' else: print 'Sorry:', n, p print all print invdef rj(s, width): if type(s) <> type(''): s = `s` n = len(s) if n >= width: return s return ' '*(width - n) + sdef lj(s, width): if type(s) <> type(''): s = `s` n = len(s) if n >= width: return s return s + ' '*(width - n)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -