📄 l1eq_pd.m
字号:
% l1eq_pd.m%% Solve% min_x ||x||_1 s.t. Ax = b%% Recast as linear program% min_{x,u} sum(u) s.t. -u <= x <= u, Ax=b% and use primal-dual interior point method%% Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter)%% x0 - Nx1 vector, initial point.%% A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm% operates in "largescale" mode, solving the Newton systems via the% Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.% If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if% the duality gap is less than pdtol). % Default = 1e-3.%% pdmaxiter - Maximum number of primal-dual iterations. % Default = 50.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.% Default = 1e-8.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored% if A is a matrix.% Default = 200.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter)largescale = isa(A,'function_handle');if (nargin < 5), pdtol = 1e-3; endif (nargin < 6), pdmaxiter = 50; endif (nargin < 7), cgtol = 1e-8; endif (nargin < 8), cgmaxiter = 200; endN = length(x0);alpha = 0.01;beta = 0.5;mu = 10;gradf0 = [zeros(N,1); ones(N,1)];x = x0;u = (0.95)*abs(x0) + (0.10)*max(abs(x0));fu1 = x - u;fu2 = -x - u;lamu1 = -1./fu1;lamu2 = -1./fu2;if (largescale) v = -A(lamu1-lamu2); Atv = At(v); rpri = A(x) - b;else v = -A*(lamu1-lamu2); Atv = A'*v; rpri = A*x - b;endsdg = -(fu1'*lamu1 + fu2'*lamu2);tau = mu*2*N/sdg;rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)];resnorm = norm([rdual; rcent; rpri]);pditer = 0;done = (sdg < pdtol) | (pditer >= pdmaxiter);while (~done) pditer = pditer + 1; w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv; w2 = -1 - 1/tau*(1./fu1 + 1./fu2); w3 = -rpri; sig1 = -lamu1./fu1 - lamu2./fu2; sig2 = lamu1./fu1 - lamu2./fu2; sigx = sig1 - sig2.^2./sig1; if (largescale) w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1)); h11pfun = @(z) -A(1./sigx.*At(z)); [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Primal-dual: Cannot solve system. Returning previous iterate.'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx; Adx = A(dx); Atdv = At(dv); else H11p = -A*diag(1./sigx)*A'; w1p = w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1)); [dv,hcond] = linsolve(H11p,w1p); if (hcond < 1e-14) disp('Primal-dual: Matrix ill-conditioned. Returning previous iterate.'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx; Adx = A*dx; Atdv = A'*dv; end du = (w2 - sig2.*dx)./sig1; dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1; dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2; % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 indp = find(dlamu1 < 0); indn = find(dlamu2 < 0); s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]); indp = find((dx-du) > 0); indn = find((-dx-du) > 0); s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]); % backtracking line search backiter = 0; xp = x + s*dx; up = u + s*du; vp = v + s*dv; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = xp - up; fu2p = -xp - up; rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); rpp = rpri + s*Adx; while(norm([rdp; rcp; rpp]) > (1-alpha*s)*resnorm) s = beta*s; xp = x + s*dx; up = u + s*du; vp = v + s*dv; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = xp - up; fu2p = -xp - up; rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); rpp = rpri + s*Adx; backiter = backiter+1; if (backiter > 32) disp('Stuck backtracking, returning last iterate.') xp = x; return end end % next iteration x = xp; u = up; v = vp; Atv = Atvp; lamu1 = lamu1p; lamu2 = lamu2p; fu1 = fu1p; fu2 = fu2p; % surrogate duality gap sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rpri = rpp; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual), norm(rpri))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -