⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 l1eq_pd.m

📁 A full implementation of ICA,PCA,LDA,SVM,in both orginal and incremental in model of real time learn
💻 M
字号:
% l1eq_pd.m%% Solve% min_x ||x||_1  s.t.  Ax = b%% Recast as linear program% min_{x,u} sum(u)  s.t.  -u <= x <= u,  Ax=b% and use primal-dual interior point method%% Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter)%% x0 - Nx1 vector, initial point.%% A - Either a handle to a function that takes a N vector and returns a K %     vector , or a KxN matrix.  If A is a function handle, the algorithm%     operates in "largescale" mode, solving the Newton systems via the%     Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.%      If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if%     the duality gap is less than pdtol).  %     Default = 1e-3.%% pdmaxiter - Maximum number of primal-dual iterations.  %     Default = 50.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.%     Default = 1e-8.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored%     if A is a matrix.%     Default = 200.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter)largescale = isa(A,'function_handle');if (nargin < 5), pdtol = 1e-3;  endif (nargin < 6), pdmaxiter = 50;  endif (nargin < 7), cgtol = 1e-8;  endif (nargin < 8), cgmaxiter = 200;  endN = length(x0);alpha = 0.01;beta = 0.5;mu = 10;gradf0 = [zeros(N,1); ones(N,1)];x = x0;u = (0.95)*abs(x0) + (0.10)*max(abs(x0));fu1 = x - u;fu2 = -x - u;lamu1 = -1./fu1;lamu2 = -1./fu2;if (largescale)  v = -A(lamu1-lamu2);  Atv = At(v);  rpri = A(x) - b;else  v = -A*(lamu1-lamu2);  Atv = A'*v;  rpri = A*x - b;endsdg = -(fu1'*lamu1 + fu2'*lamu2);tau = mu*2*N/sdg;rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)];resnorm = norm([rdual; rcent; rpri]);pditer = 0;done = (sdg < pdtol) | (pditer >= pdmaxiter);while (~done)    pditer = pditer + 1;    w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv;  w2 = -1 - 1/tau*(1./fu1 + 1./fu2);  w3 = -rpri;    sig1 = -lamu1./fu1 - lamu2./fu2;  sig2 = lamu1./fu1 - lamu2./fu2;  sigx = sig1 - sig2.^2./sig1;    if (largescale)    w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1));    h11pfun = @(z) -A(1./sigx.*At(z));    [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0);    if (cgres > 1/2)      disp('Primal-dual: Cannot solve system.  Returning previous iterate.');      xp = x;      return    end    dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx;    Adx = A(dx);    Atdv = At(dv);  else    H11p = -A*diag(1./sigx)*A';    w1p = w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1));    [dv,hcond] = linsolve(H11p,w1p);    if (hcond < 1e-14)      disp('Primal-dual: Matrix ill-conditioned.  Returning previous iterate.');      xp = x;      return    end    dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx;    Adx = A*dx;    Atdv = A'*dv;  end    du = (w2 - sig2.*dx)./sig1;    dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1;  dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2;    % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0  indp = find(dlamu1 < 0);  indn = find(dlamu2 < 0);  s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]);  indp = find((dx-du) > 0);  indn = find((-dx-du) > 0);  s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]);    % backtracking line search   backiter = 0;  xp = x + s*dx;  up = u + s*du;   vp = v + s*dv;  Atvp = Atv + s*Atdv;   lamu1p = lamu1 + s*dlamu1;  lamu2p = lamu2 + s*dlamu2;  fu1p = xp - up;  fu2p = -xp - up;    rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)];  rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau);  rpp = rpri + s*Adx;  while(norm([rdp; rcp; rpp]) > (1-alpha*s)*resnorm)    s = beta*s;    xp = x + s*dx;  up = u + s*du;     vp = v + s*dv;  Atvp = Atv + s*Atdv;     lamu1p = lamu1 + s*dlamu1;  lamu2p = lamu2 + s*dlamu2;    fu1p = xp - up;  fu2p = -xp - up;      rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)];    rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau);    rpp = rpri + s*Adx;    backiter = backiter+1;    if (backiter > 32)      disp('Stuck backtracking, returning last iterate.')      xp = x;      return    end  end      % next iteration  x = xp;  u = up;  v = vp;  Atv = Atvp;   lamu1 = lamu1p;  lamu2 = lamu2p;  fu1 = fu1p;  fu2 = fu2p;    % surrogate duality gap  sdg = -(fu1'*lamu1 + fu2'*lamu2);  tau = mu*2*N/sdg;  rpri = rpp;  rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau);  rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)];  resnorm = norm([rdual; rcent; rpri]);    done = (sdg < pdtol) | (pditer >= pdmaxiter);    disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',...    pditer, tau, sum(u), sdg, norm(rdual), norm(rpri)));  if (largescale)    disp(sprintf('                  CG Res = %8.3e, CG Iter = %d', cgres, cgiter));  else    disp(sprintf('                  H11p condition number = %8.3e', hcond));  end  end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -