📄 l1dantzig_pd.m
字号:
% l1dantzig_pd.m%% Solves% min_x ||x||_1 subject to ||A'(Ax-b)||_\infty <= epsilon%% Recast as linear program% min_{x,u} sum(u) s.t. x - u <= 0% -x - u <= 0% A'(Ax-b) - epsilon <= 0% -A'(Ax-b) - epsilon <= 0% and use primal-dual interior point method.%% Usage: xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)%% x0 - Nx1 vector, initial point.%% A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm% operates in "largescale" mode, solving the Newton systems via the% Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.% If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% epsilon - scalar%% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if% the duality gap is less than pdtol). % Default = 1e-3.%% pdmaxiter - Maximum number of primal-dual iterations. % Default = 50.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.% Default = 1e-8.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored% if A is a matrix.% Default = 200.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)largescale = isa(A,'function_handle');if (nargin < 6), pdtol = 1e-3; endif (nargin < 7), pdmaxiter = 50; endif (nargin < 8), cgtol = 1e-8; endif (nargin < 9), cgmaxiter = 200; endN = length(x0);alpha = 0.01;beta = 0.5;mu = 10;gradf0 = [zeros(N,1); ones(N,1)];% starting pointx = x0;u = (0.95)*abs(x0) + (0.10)*max(abs(x0));if (largescale) Atr = At(A(x) - b);else Atr = A'*(A*x - b);endfu1 = x - u;fu2 = -x - u;fe1 = Atr - epsilon;fe2 = -Atr - epsilon;lamu1 = -(1./fu1);lamu2 = -(1./fu2);lame1 = -(1./fe1);lame2 = -(1./fe2);if (largescale) AtAv = At(A(lame1-lame2));else AtAv = A'*(A*(lame1-lame2));end% sdg = surrogate duality gapsdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];tau = mu*(4*N)/sdg;% residualsrdual = gradf0 + [lamu1-lamu2 + AtAv; -lamu1-lamu2];rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);resnorm = norm([rdual; rcent]);% iterationspditer = 0;done = (sdg < pdtol) | (pditer >= pdmaxiter);while (~done) % solve for step direction w2 = - 1 - (1/tau)*(1./fu1 + 1./fu2); sig11 = -lamu1./fu1 - lamu2./fu2; sig12 = lamu1./fu1 - lamu2./fu2; siga = -(lame1./fe1 + lame2./fe2); sigx = sig11 - sig12.^2./sig11; if (largescale) w1 = -(1/tau)*( At(A(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 ); w1p = w1 - (sig12./sig11).*w2; hpfun = @(z) At(A(siga.*At(A(z)))) + sigx.*z; [dx, cgres, cgiter] = cgsolve(hpfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Newton: Cannot solve system. Returning previous iterate.'); xp = x; return end AtAdx = At(A(dx)); else w1 = -(1/tau)*( A'*(A*(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 ); w1p = w1 - (sig12./sig11).*w2; Hp = A'*(A*diag(siga)*A')*A + diag(sigx); [dx, hcond] = linsolve(Hp, w1p); if (hcond < 1e-14) disp('Newton: Matrix ill-conditioned. Returning previous iterate.'); xp = x; return end AtAdx = A'*(A*dx); end du = w2./sig11 - (sig12./sig11).*dx; dlamu1 = -(lamu1./fu1).*(dx-du) - lamu1 - (1/tau)*1./fu1; dlamu2 = -(lamu2./fu2).*(-dx-du) - lamu2 - (1/tau)*1./fu2; dlame1 = -(lame1./fe1).*(AtAdx) - lame1 - (1/tau)*1./fe1; dlame2 = -(lame2./fe2).*(-AtAdx) - lame2 - (1/tau)*1./fe2; if (largescale) AtAdv = At(A(dlame1-dlame2)); else AtAdv = A'*(A*(dlame1-dlame2)); end % find minimal step size that keeps ineq functions < 0, dual vars > 0 iu1 = find(dlamu1 < 0); iu2 = find(dlamu2 < 0); ie1 = find(dlame1 < 0); ie2 = find(dlame2 < 0); ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0); ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0); smax = min(1,min([... -lamu1(iu1)./dlamu1(iu1); -lamu2(iu2)./dlamu2(iu2); ... -lame1(ie1)./dlame1(ie1); -lame2(ie2)./dlame2(ie2); ... -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ... -fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)) ])); s = 0.99*smax; % backtracking line search suffdec = 0; backiter = 0; while (~suffdec) xp = x + s*dx; up = u + s*du; Atrp = Atr + s*AtAdx; AtAvp = AtAv + s*AtAdv; fu1p = fu1 + s*(dx-du); fu2p = fu2 + s*(-dx-du); fe1p = fe1 + s*AtAdx; fe2p = fe2 + s*(-AtAdx); lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; lame1p = lame1 + s*dlame1; lame2p = lame2 + s*dlame2; rdp = gradf0 + [lamu1p-lamu2p + AtAvp; -lamu1p-lamu2p]; rcp = -[lamu1p.*fu1p; lamu2p.*fu2p; lame1p.*fe1p; lame2p.*fe2p] - (1/tau); suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm); s = beta*s; backiter = backiter+1; if (backiter > 32) disp('Stuck backtracking, returning last iterate.') xp = x; return end end % setup for next iteration x = xp; u = up; Atr = Atrp; AtAv = AtAvp; fu1 = fu1p; fu2 = fu2p; fe1 = fe1p; fe2 = fe2p; lamu1 = lamu1p; lamu2 = lamu2p; lame1 = lame1p; lame2 = lame2p; sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2]; tau = mu*(4*N)/sdg; rdual = rdp; rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau); resnorm = norm([rdual; rcent]); pditer = pditer+1; done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -