⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 l1dantzig_pd.m

📁 A full implementation of ICA,PCA,LDA,SVM,in both orginal and incremental in model of real time learn
💻 M
字号:
% l1dantzig_pd.m%% Solves% min_x  ||x||_1  subject to  ||A'(Ax-b)||_\infty <= epsilon%% Recast as linear program% min_{x,u}  sum(u)  s.t.  x - u <= 0%                         -x - u <= 0%             A'(Ax-b) - epsilon <= 0%            -A'(Ax-b) - epsilon <= 0% and use primal-dual interior point method.%% Usage: xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)%% x0 - Nx1 vector, initial point.%% A - Either a handle to a function that takes a N vector and returns a K %     vector , or a KxN matrix.  If A is a function handle, the algorithm%     operates in "largescale" mode, solving the Newton systems via the%     Conjugate Gradients algorithm.%% At - Handle to a function that takes a K vector and returns an N vector.%      If A is a KxN matrix, At is ignored.%% b - Kx1 vector of observations.%% epsilon - scalar%% pdtol - Tolerance for primal-dual algorithm (algorithm terminates if%     the duality gap is less than pdtol).  %     Default = 1e-3.%% pdmaxiter - Maximum number of primal-dual iterations.  %     Default = 50.%% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.%     Default = 1e-8.%% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored%     if A is a matrix.%     Default = 200.%% Written by: Justin Romberg, Caltech% Email: jrom@acm.caltech.edu% Created: October 2005%function xp = l1dantzig_pd(x0, A, At, b, epsilon, pdtol, pdmaxiter, cgtol, cgmaxiter)largescale = isa(A,'function_handle');if (nargin < 6), pdtol = 1e-3;  endif (nargin < 7), pdmaxiter = 50;  endif (nargin < 8), cgtol = 1e-8;  endif (nargin < 9), cgmaxiter = 200;  endN = length(x0);alpha = 0.01;beta = 0.5;mu = 10;gradf0 = [zeros(N,1); ones(N,1)];% starting pointx = x0;u = (0.95)*abs(x0) + (0.10)*max(abs(x0));if (largescale)  Atr = At(A(x) - b);else  Atr = A'*(A*x - b);endfu1 = x - u;fu2 = -x - u;fe1 = Atr - epsilon;fe2 = -Atr - epsilon;lamu1 = -(1./fu1);lamu2 = -(1./fu2);lame1 = -(1./fe1);lame2 = -(1./fe2);if (largescale)  AtAv = At(A(lame1-lame2));else  AtAv = A'*(A*(lame1-lame2));end% sdg = surrogate duality gapsdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];tau = mu*(4*N)/sdg;% residualsrdual = gradf0 + [lamu1-lamu2 + AtAv; -lamu1-lamu2];rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);resnorm = norm([rdual; rcent]);% iterationspditer = 0;done = (sdg < pdtol) | (pditer >= pdmaxiter);while (~done)  % solve for step direction  w2 = - 1 - (1/tau)*(1./fu1 + 1./fu2);    sig11 = -lamu1./fu1 - lamu2./fu2;  sig12 = lamu1./fu1 - lamu2./fu2;  siga = -(lame1./fe1 + lame2./fe2);  sigx = sig11 - sig12.^2./sig11;    if (largescale)    w1 = -(1/tau)*( At(A(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 );    w1p = w1 - (sig12./sig11).*w2;    hpfun = @(z) At(A(siga.*At(A(z)))) + sigx.*z;    [dx, cgres, cgiter] = cgsolve(hpfun, w1p, cgtol, cgmaxiter, 0);    if (cgres > 1/2)      disp('Newton: Cannot solve system.  Returning previous iterate.');      xp = x;      return    end    AtAdx = At(A(dx));  else    w1 = -(1/tau)*( A'*(A*(1./fe2-1./fe1)) + 1./fu2 - 1./fu1 );    w1p = w1 - (sig12./sig11).*w2;    Hp = A'*(A*diag(siga)*A')*A + diag(sigx);    [dx, hcond] = linsolve(Hp, w1p);    if (hcond < 1e-14)      disp('Newton: Matrix ill-conditioned.  Returning previous iterate.');      xp = x;      return    end    AtAdx = A'*(A*dx);  end  du = w2./sig11 - (sig12./sig11).*dx;    dlamu1 = -(lamu1./fu1).*(dx-du) - lamu1 - (1/tau)*1./fu1;  dlamu2 = -(lamu2./fu2).*(-dx-du) - lamu2 - (1/tau)*1./fu2;  dlame1 = -(lame1./fe1).*(AtAdx) - lame1 - (1/tau)*1./fe1;  dlame2 = -(lame2./fe2).*(-AtAdx) - lame2 - (1/tau)*1./fe2;  if (largescale)      AtAdv = At(A(dlame1-dlame2));    else    AtAdv = A'*(A*(dlame1-dlame2));    end	    % find minimal step size that keeps ineq functions < 0, dual vars > 0  iu1 = find(dlamu1 < 0); iu2 = find(dlamu2 < 0);   ie1 = find(dlame1 < 0); ie2 = find(dlame2 < 0);  ifu1 = find((dx-du) > 0); ifu2 = find((-dx-du) > 0);   ife1 = find(AtAdx > 0); ife2 = find(-AtAdx > 0);   smax = min(1,min([...    -lamu1(iu1)./dlamu1(iu1); -lamu2(iu2)./dlamu2(iu2); ...    -lame1(ie1)./dlame1(ie1); -lame2(ie2)./dlame2(ie2); ...    -fu1(ifu1)./(dx(ifu1)-du(ifu1)); -fu2(ifu2)./(-dx(ifu2)-du(ifu2)); ...    -fe1(ife1)./AtAdx(ife1); -fe2(ife2)./(-AtAdx(ife2)) ]));  s = 0.99*smax;    % backtracking line search  suffdec = 0;  backiter = 0;  while (~suffdec)    xp = x + s*dx;  up = u + s*du;    Atrp = Atr + s*AtAdx;  AtAvp = AtAv + s*AtAdv;    fu1p = fu1 + s*(dx-du);  fu2p = fu2 + s*(-dx-du);    fe1p = fe1 + s*AtAdx;  fe2p = fe2 + s*(-AtAdx);    lamu1p = lamu1 + s*dlamu1;  lamu2p = lamu2 + s*dlamu2;    lame1p = lame1 + s*dlame1; lame2p = lame2 + s*dlame2;    rdp = gradf0 + [lamu1p-lamu2p + AtAvp; -lamu1p-lamu2p];    rcp = -[lamu1p.*fu1p; lamu2p.*fu2p; lame1p.*fe1p; lame2p.*fe2p] - (1/tau);    suffdec = (norm([rdp; rcp]) <= (1-alpha*s)*resnorm);    s = beta*s;    backiter = backiter+1;    if (backiter > 32)      disp('Stuck backtracking, returning last iterate.')      xp = x;      return    end  end      % setup for next iteration  x = xp;  u = up;  Atr = Atrp;  AtAv = AtAvp;  fu1 = fu1p; fu2 = fu2p;   fe1 = fe1p; fe2 = fe2p;  lamu1 = lamu1p; lamu2 = lamu2p;   lame1 = lame1p; lame2 = lame2p;    sdg = -[fu1; fu2; fe1; fe2]'*[lamu1; lamu2; lame1; lame2];  tau = mu*(4*N)/sdg;  rdual = rdp;  rcent = -[lamu1.*fu1; lamu2.*fu2; lame1.*fe1; lame2.*fe2] - (1/tau);  resnorm = norm([rdual; rcent]);    pditer = pditer+1;  done = (sdg < pdtol) | (pditer >= pdmaxiter);    disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e',...    pditer, tau, sum(u), sdg, norm(rdual)));  if (largescale)    disp(sprintf('                CG Res = %8.3e, CG Iter = %d', cgres, cgiter));  else    disp(sprintf('                  H11p condition number = %8.3e', hcond));  end  end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -