⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 memcontrol.c

📁 最新最稳定的Linux内存管理模块源代码
💻 C
📖 第 1 页 / 共 4 页
字号:
	int retval = 0;	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);	struct cgroup *parent = cont->parent;	struct mem_cgroup *parent_mem = NULL;	if (parent)		parent_mem = mem_cgroup_from_cont(parent);	cgroup_lock();	/*	 * If parent's use_hiearchy is set, we can't make any modifications	 * in the child subtrees. If it is unset, then the change can	 * occur, provided the current cgroup has no children.	 *	 * For the root cgroup, parent_mem is NULL, we allow value to be	 * set if there are no children.	 */	if ((!parent_mem || !parent_mem->use_hierarchy) &&				(val == 1 || val == 0)) {		if (list_empty(&cont->children))			mem->use_hierarchy = val;		else			retval = -EBUSY;	} else		retval = -EINVAL;	cgroup_unlock();	return retval;}static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft){	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);	u64 val = 0;	int type, name;	type = MEMFILE_TYPE(cft->private);	name = MEMFILE_ATTR(cft->private);	switch (type) {	case _MEM:		val = res_counter_read_u64(&mem->res, name);		break;	case _MEMSWAP:		if (do_swap_account)			val = res_counter_read_u64(&mem->memsw, name);		break;	default:		BUG();		break;	}	return val;}/* * The user of this function is... * RES_LIMIT. */static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,			    const char *buffer){	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);	int type, name;	unsigned long long val;	int ret;	type = MEMFILE_TYPE(cft->private);	name = MEMFILE_ATTR(cft->private);	switch (name) {	case RES_LIMIT:		/* This function does all necessary parse...reuse it */		ret = res_counter_memparse_write_strategy(buffer, &val);		if (ret)			break;		if (type == _MEM)			ret = mem_cgroup_resize_limit(memcg, val);		else			ret = mem_cgroup_resize_memsw_limit(memcg, val);		break;	default:		ret = -EINVAL; /* should be BUG() ? */		break;	}	return ret;}static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,		unsigned long long *mem_limit, unsigned long long *memsw_limit){	struct cgroup *cgroup;	unsigned long long min_limit, min_memsw_limit, tmp;	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);	cgroup = memcg->css.cgroup;	if (!memcg->use_hierarchy)		goto out;	while (cgroup->parent) {		cgroup = cgroup->parent;		memcg = mem_cgroup_from_cont(cgroup);		if (!memcg->use_hierarchy)			break;		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);		min_limit = min(min_limit, tmp);		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);		min_memsw_limit = min(min_memsw_limit, tmp);	}out:	*mem_limit = min_limit;	*memsw_limit = min_memsw_limit;	return;}static int mem_cgroup_reset(struct cgroup *cont, unsigned int event){	struct mem_cgroup *mem;	int type, name;	mem = mem_cgroup_from_cont(cont);	type = MEMFILE_TYPE(event);	name = MEMFILE_ATTR(event);	switch (name) {	case RES_MAX_USAGE:		if (type == _MEM)			res_counter_reset_max(&mem->res);		else			res_counter_reset_max(&mem->memsw);		break;	case RES_FAILCNT:		if (type == _MEM)			res_counter_reset_failcnt(&mem->res);		else			res_counter_reset_failcnt(&mem->memsw);		break;	}	return 0;}static const struct mem_cgroup_stat_desc {	const char *msg;	u64 unit;} mem_cgroup_stat_desc[] = {	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },};static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,				 struct cgroup_map_cb *cb){	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);	struct mem_cgroup_stat *stat = &mem_cont->stat;	int i;	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {		s64 val;		val = mem_cgroup_read_stat(stat, i);		val *= mem_cgroup_stat_desc[i].unit;		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);	}	/* showing # of active pages */	{		unsigned long active_anon, inactive_anon;		unsigned long active_file, inactive_file;		unsigned long unevictable;		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,						LRU_INACTIVE_ANON);		active_anon = mem_cgroup_get_all_zonestat(mem_cont,						LRU_ACTIVE_ANON);		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,						LRU_INACTIVE_FILE);		active_file = mem_cgroup_get_all_zonestat(mem_cont,						LRU_ACTIVE_FILE);		unevictable = mem_cgroup_get_all_zonestat(mem_cont,							LRU_UNEVICTABLE);		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);	}	{		unsigned long long limit, memsw_limit;		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);		cb->fill(cb, "hierarchical_memory_limit", limit);		if (do_swap_account)			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);	}#ifdef CONFIG_DEBUG_VM	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));	{		int nid, zid;		struct mem_cgroup_per_zone *mz;		unsigned long recent_rotated[2] = {0, 0};		unsigned long recent_scanned[2] = {0, 0};		for_each_online_node(nid)			for (zid = 0; zid < MAX_NR_ZONES; zid++) {				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);				recent_rotated[0] +=					mz->reclaim_stat.recent_rotated[0];				recent_rotated[1] +=					mz->reclaim_stat.recent_rotated[1];				recent_scanned[0] +=					mz->reclaim_stat.recent_scanned[0];				recent_scanned[1] +=					mz->reclaim_stat.recent_scanned[1];			}		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);	}#endif	return 0;}static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft){	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);	return get_swappiness(memcg);}static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,				       u64 val){	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);	struct mem_cgroup *parent;	if (val > 100)		return -EINVAL;	if (cgrp->parent == NULL)		return -EINVAL;	parent = mem_cgroup_from_cont(cgrp->parent);	cgroup_lock();	/* If under hierarchy, only empty-root can set this value */	if ((parent->use_hierarchy) ||	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {		cgroup_unlock();		return -EINVAL;	}	spin_lock(&memcg->reclaim_param_lock);	memcg->swappiness = val;	spin_unlock(&memcg->reclaim_param_lock);	cgroup_unlock();	return 0;}static struct cftype mem_cgroup_files[] = {	{		.name = "usage_in_bytes",		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),		.read_u64 = mem_cgroup_read,	},	{		.name = "max_usage_in_bytes",		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),		.trigger = mem_cgroup_reset,		.read_u64 = mem_cgroup_read,	},	{		.name = "limit_in_bytes",		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),		.write_string = mem_cgroup_write,		.read_u64 = mem_cgroup_read,	},	{		.name = "failcnt",		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),		.trigger = mem_cgroup_reset,		.read_u64 = mem_cgroup_read,	},	{		.name = "stat",		.read_map = mem_control_stat_show,	},	{		.name = "force_empty",		.trigger = mem_cgroup_force_empty_write,	},	{		.name = "use_hierarchy",		.write_u64 = mem_cgroup_hierarchy_write,		.read_u64 = mem_cgroup_hierarchy_read,	},	{		.name = "swappiness",		.read_u64 = mem_cgroup_swappiness_read,		.write_u64 = mem_cgroup_swappiness_write,	},};#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAPstatic struct cftype memsw_cgroup_files[] = {	{		.name = "memsw.usage_in_bytes",		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),		.read_u64 = mem_cgroup_read,	},	{		.name = "memsw.max_usage_in_bytes",		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),		.trigger = mem_cgroup_reset,		.read_u64 = mem_cgroup_read,	},	{		.name = "memsw.limit_in_bytes",		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),		.write_string = mem_cgroup_write,		.read_u64 = mem_cgroup_read,	},	{		.name = "memsw.failcnt",		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),		.trigger = mem_cgroup_reset,		.read_u64 = mem_cgroup_read,	},};static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss){	if (!do_swap_account)		return 0;	return cgroup_add_files(cont, ss, memsw_cgroup_files,				ARRAY_SIZE(memsw_cgroup_files));};#elsestatic int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss){	return 0;}#endifstatic int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node){	struct mem_cgroup_per_node *pn;	struct mem_cgroup_per_zone *mz;	enum lru_list l;	int zone, tmp = node;	/*	 * This routine is called against possible nodes.	 * But it's BUG to call kmalloc() against offline node.	 *	 * TODO: this routine can waste much memory for nodes which will	 *       never be onlined. It's better to use memory hotplug callback	 *       function.	 */	if (!node_state(node, N_NORMAL_MEMORY))		tmp = -1;	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);	if (!pn)		return 1;	mem->info.nodeinfo[node] = pn;	memset(pn, 0, sizeof(*pn));	for (zone = 0; zone < MAX_NR_ZONES; zone++) {		mz = &pn->zoneinfo[zone];		for_each_lru(l)			INIT_LIST_HEAD(&mz->lists[l]);	}	return 0;}static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node){	kfree(mem->info.nodeinfo[node]);}static int mem_cgroup_size(void){	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);	return sizeof(struct mem_cgroup) + cpustat_size;}static struct mem_cgroup *mem_cgroup_alloc(void){	struct mem_cgroup *mem;	int size = mem_cgroup_size();	if (size < PAGE_SIZE)		mem = kmalloc(size, GFP_KERNEL);	else		mem = vmalloc(size);	if (mem)		memset(mem, 0, size);	return mem;}/* * At destroying mem_cgroup, references from swap_cgroup can remain. * (scanning all at force_empty is too costly...) * * Instead of clearing all references at force_empty, we remember * the number of reference from swap_cgroup and free mem_cgroup when * it goes down to 0. * * Removal of cgroup itself succeeds regardless of refs from swap. */static void __mem_cgroup_free(struct mem_cgroup *mem){	int node;	for_each_node_state(node, N_POSSIBLE)		free_mem_cgroup_per_zone_info(mem, node);	if (mem_cgroup_size() < PAGE_SIZE)		kfree(mem);	else		vfree(mem);}static void mem_cgroup_get(struct mem_cgroup *mem){	atomic_inc(&mem->refcnt);}static void mem_cgroup_put(struct mem_cgroup *mem){	if (atomic_dec_and_test(&mem->refcnt)) {		struct mem_cgroup *parent = parent_mem_cgroup(mem);		__mem_cgroup_free(mem);		if (parent)			mem_cgroup_put(parent);	}}/* * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. */static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem){	if (!mem->res.parent)		return NULL;	return mem_cgroup_from_res_counter(mem->res.parent, res);}#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAPstatic void __init enable_swap_cgroup(void){	if (!mem_cgroup_disabled() && really_do_swap_account)		do_swap_account = 1;}#elsestatic void __init enable_swap_cgroup(void){}#endifstatic struct cgroup_subsys_state * __refmem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont){	struct mem_cgroup *mem, *parent;	int node;	mem = mem_cgroup_alloc();	if (!mem)		return ERR_PTR(-ENOMEM);	for_each_node_state(node, N_POSSIBLE)		if (alloc_mem_cgroup_per_zone_info(mem, node))			goto free_out;	/* root ? */	if (cont->parent == NULL) {		enable_swap_cgroup();		parent = NULL;	} else {		parent = mem_cgroup_from_cont(cont->parent);		mem->use_hierarchy = parent->use_hierarchy;	}	if (parent && parent->use_hierarchy) {		res_counter_init(&mem->res, &parent->res);		res_counter_init(&mem->memsw, &parent->memsw);		/*		 * We increment refcnt of the parent to ensure that we can		 * safely access it on res_counter_charge/uncharge.		 * This refcnt will be decremented when freeing this		 * mem_cgroup(see mem_cgroup_put).		 */		mem_cgroup_get(parent);	} else {		res_counter_init(&mem->res, NULL);		res_counter_init(&mem->memsw, NULL);	}	mem->last_scanned_child = NULL;	spin_lock_init(&mem->reclaim_param_lock);	if (parent)		mem->swappiness = get_swappiness(parent);	atomic_set(&mem->refcnt, 1);	return &mem->css;free_out:	__mem_cgroup_free(mem);	return ERR_PTR(-ENOMEM);}static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,					struct cgroup *cont){	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);	mem_cgroup_force_empty(mem, false);}static void mem_cgroup_destroy(struct cgroup_subsys *ss,				struct cgroup *cont){	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);	struct mem_cgroup *last_scanned_child = mem->last_scanned_child;	if (last_scanned_child) {		VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));		mem_cgroup_put(last_scanned_child);	}	mem_cgroup_put(mem);}static int mem_cgroup_populate(struct cgroup_subsys *ss,				struct cgroup *cont){	int ret;	ret = cgroup_add_files(cont, ss, mem_cgroup_files,				ARRAY_SIZE(mem_cgroup_files));	if (!ret)		ret = register_memsw_files(cont, ss);	return ret;}static void mem_cgroup_move_task(struct cgroup_subsys *ss,				struct cgroup *cont,				struct cgroup *old_cont,				struct task_struct *p){	mutex_lock(&memcg_tasklist);	/*	 * FIXME: It's better to move charges of this process from old	 * memcg to new memcg. But it's just on TODO-List now.	 */	mutex_unlock(&memcg_tasklist);}struct cgroup_subsys mem_cgroup_subsys = {	.name = "memory",	.subsys_id = mem_cgroup_subsys_id,	.create = mem_cgroup_create,	.pre_destroy = mem_cgroup_pre_destroy,	.destroy = mem_cgroup_destroy,	.populate = mem_cgroup_populate,	.attach = mem_cgroup_move_task,	.early_init = 0,};#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAPstatic int __init disable_swap_account(char *s){	really_do_swap_account = 0;	return 1;}__setup("noswapaccount", disable_swap_account);#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -