⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vmstat.c

📁 最新最稳定的Linux内存管理模块源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  linux/mm/vmstat.c * *  Manages VM statistics *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds * *  zoned VM statistics *  Copyright (C) 2006 Silicon Graphics, Inc., *		Christoph Lameter <christoph@lameter.com> */#include <linux/fs.h>#include <linux/mm.h>#include <linux/err.h>#include <linux/module.h>#include <linux/cpu.h>#include <linux/vmstat.h>#include <linux/sched.h>#ifdef CONFIG_VM_EVENT_COUNTERSDEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};EXPORT_PER_CPU_SYMBOL(vm_event_states);static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask){	int cpu;	int i;	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));	for_each_cpu_mask_nr(cpu, *cpumask) {		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)			ret[i] += this->event[i];	}}/* * Accumulate the vm event counters across all CPUs. * The result is unavoidably approximate - it can change * during and after execution of this function.*/void all_vm_events(unsigned long *ret){	get_online_cpus();	sum_vm_events(ret, cpu_online_mask);	put_online_cpus();}EXPORT_SYMBOL_GPL(all_vm_events);#ifdef CONFIG_HOTPLUG/* * Fold the foreign cpu events into our own. * * This is adding to the events on one processor * but keeps the global counts constant. */void vm_events_fold_cpu(int cpu){	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);	int i;	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {		count_vm_events(i, fold_state->event[i]);		fold_state->event[i] = 0;	}}#endif /* CONFIG_HOTPLUG */#endif /* CONFIG_VM_EVENT_COUNTERS *//* * Manage combined zone based / global counters * * vm_stat contains the global counters */atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];EXPORT_SYMBOL(vm_stat);#ifdef CONFIG_SMPstatic int calculate_threshold(struct zone *zone){	int threshold;	int mem;	/* memory in 128 MB units */	/*	 * The threshold scales with the number of processors and the amount	 * of memory per zone. More memory means that we can defer updates for	 * longer, more processors could lead to more contention. 	 * fls() is used to have a cheap way of logarithmic scaling.	 *	 * Some sample thresholds:	 *	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)	 * ------------------------------------------------------------------	 * 8		1		1	0.9-1 GB	4	 * 16		2		2	0.9-1 GB	4	 * 20 		2		2	1-2 GB		5	 * 24		2		2	2-4 GB		6	 * 28		2		2	4-8 GB		7	 * 32		2		2	8-16 GB		8	 * 4		2		2	<128M		1	 * 30		4		3	2-4 GB		5	 * 48		4		3	8-16 GB		8	 * 32		8		4	1-2 GB		4	 * 32		8		4	0.9-1GB		4	 * 10		16		5	<128M		1	 * 40		16		5	900M		4	 * 70		64		7	2-4 GB		5	 * 84		64		7	4-8 GB		6	 * 108		512		9	4-8 GB		6	 * 125		1024		10	8-16 GB		8	 * 125		1024		10	16-32 GB	9	 */	mem = zone->present_pages >> (27 - PAGE_SHIFT);	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));	/*	 * Maximum threshold is 125	 */	threshold = min(125, threshold);	return threshold;}/* * Refresh the thresholds for each zone. */static void refresh_zone_stat_thresholds(void){	struct zone *zone;	int cpu;	int threshold;	for_each_zone(zone) {		if (!zone->present_pages)			continue;		threshold = calculate_threshold(zone);		for_each_online_cpu(cpu)			zone_pcp(zone, cpu)->stat_threshold = threshold;	}}/* * For use when we know that interrupts are disabled. */void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,				int delta){	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());	s8 *p = pcp->vm_stat_diff + item;	long x;	x = delta + *p;	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {		zone_page_state_add(x, zone, item);		x = 0;	}	*p = x;}EXPORT_SYMBOL(__mod_zone_page_state);/* * For an unknown interrupt state */void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,					int delta){	unsigned long flags;	local_irq_save(flags);	__mod_zone_page_state(zone, item, delta);	local_irq_restore(flags);}EXPORT_SYMBOL(mod_zone_page_state);/* * Optimized increment and decrement functions. * * These are only for a single page and therefore can take a struct page * * argument instead of struct zone *. This allows the inclusion of the code * generated for page_zone(page) into the optimized functions. * * No overflow check is necessary and therefore the differential can be * incremented or decremented in place which may allow the compilers to * generate better code. * The increment or decrement is known and therefore one boundary check can * be omitted. * * NOTE: These functions are very performance sensitive. Change only * with care. * * Some processors have inc/dec instructions that are atomic vs an interrupt. * However, the code must first determine the differential location in a zone * based on the processor number and then inc/dec the counter. There is no * guarantee without disabling preemption that the processor will not change * in between and therefore the atomicity vs. interrupt cannot be exploited * in a useful way here. */void __inc_zone_state(struct zone *zone, enum zone_stat_item item){	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());	s8 *p = pcp->vm_stat_diff + item;	(*p)++;	if (unlikely(*p > pcp->stat_threshold)) {		int overstep = pcp->stat_threshold / 2;		zone_page_state_add(*p + overstep, zone, item);		*p = -overstep;	}}void __inc_zone_page_state(struct page *page, enum zone_stat_item item){	__inc_zone_state(page_zone(page), item);}EXPORT_SYMBOL(__inc_zone_page_state);void __dec_zone_state(struct zone *zone, enum zone_stat_item item){	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());	s8 *p = pcp->vm_stat_diff + item;	(*p)--;	if (unlikely(*p < - pcp->stat_threshold)) {		int overstep = pcp->stat_threshold / 2;		zone_page_state_add(*p - overstep, zone, item);		*p = overstep;	}}void __dec_zone_page_state(struct page *page, enum zone_stat_item item){	__dec_zone_state(page_zone(page), item);}EXPORT_SYMBOL(__dec_zone_page_state);void inc_zone_state(struct zone *zone, enum zone_stat_item item){	unsigned long flags;	local_irq_save(flags);	__inc_zone_state(zone, item);	local_irq_restore(flags);}void inc_zone_page_state(struct page *page, enum zone_stat_item item){	unsigned long flags;	struct zone *zone;	zone = page_zone(page);	local_irq_save(flags);	__inc_zone_state(zone, item);	local_irq_restore(flags);}EXPORT_SYMBOL(inc_zone_page_state);void dec_zone_page_state(struct page *page, enum zone_stat_item item){	unsigned long flags;	local_irq_save(flags);	__dec_zone_page_state(page, item);	local_irq_restore(flags);}EXPORT_SYMBOL(dec_zone_page_state);/* * Update the zone counters for one cpu. * * The cpu specified must be either the current cpu or a processor that * is not online. If it is the current cpu then the execution thread must * be pinned to the current cpu. * * Note that refresh_cpu_vm_stats strives to only access * node local memory. The per cpu pagesets on remote zones are placed * in the memory local to the processor using that pageset. So the * loop over all zones will access a series of cachelines local to * the processor. * * The call to zone_page_state_add updates the cachelines with the * statistics in the remote zone struct as well as the global cachelines * with the global counters. These could cause remote node cache line * bouncing and will have to be only done when necessary. */void refresh_cpu_vm_stats(int cpu){	struct zone *zone;	int i;	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };	for_each_zone(zone) {		struct per_cpu_pageset *p;		if (!populated_zone(zone))			continue;		p = zone_pcp(zone, cpu);		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)			if (p->vm_stat_diff[i]) {				unsigned long flags;				int v;				local_irq_save(flags);				v = p->vm_stat_diff[i];				p->vm_stat_diff[i] = 0;				local_irq_restore(flags);				atomic_long_add(v, &zone->vm_stat[i]);				global_diff[i] += v;#ifdef CONFIG_NUMA				/* 3 seconds idle till flush */				p->expire = 3;#endif			}		cond_resched();#ifdef CONFIG_NUMA		/*		 * Deal with draining the remote pageset of this		 * processor		 *		 * Check if there are pages remaining in this pageset		 * if not then there is nothing to expire.		 */		if (!p->expire || !p->pcp.count)			continue;		/*		 * We never drain zones local to this processor.		 */		if (zone_to_nid(zone) == numa_node_id()) {			p->expire = 0;			continue;		}		p->expire--;		if (p->expire)			continue;		if (p->pcp.count)			drain_zone_pages(zone, &p->pcp);#endif	}	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)		if (global_diff[i])			atomic_long_add(global_diff[i], &vm_stat[i]);}#endif#ifdef CONFIG_NUMA/* * zonelist = the list of zones passed to the allocator * z 	    = the zone from which the allocation occurred. * * Must be called with interrupts disabled. */void zone_statistics(struct zone *preferred_zone, struct zone *z){	if (z->zone_pgdat == preferred_zone->zone_pgdat) {		__inc_zone_state(z, NUMA_HIT);	} else {		__inc_zone_state(z, NUMA_MISS);		__inc_zone_state(preferred_zone, NUMA_FOREIGN);	}	if (z->node == numa_node_id())		__inc_zone_state(z, NUMA_LOCAL);	else		__inc_zone_state(z, NUMA_OTHER);}#endif#ifdef CONFIG_PROC_FS#include <linux/proc_fs.h>#include <linux/seq_file.h>static char * const migratetype_names[MIGRATE_TYPES] = {	"Unmovable",	"Reclaimable",	"Movable",	"Reserve",	"Isolate",};static void *frag_start(struct seq_file *m, loff_t *pos){	pg_data_t *pgdat;	loff_t node = *pos;	for (pgdat = first_online_pgdat();	     pgdat && node;	     pgdat = next_online_pgdat(pgdat))		--node;	return pgdat;}static void *frag_next(struct seq_file *m, void *arg, loff_t *pos){	pg_data_t *pgdat = (pg_data_t *)arg;	(*pos)++;	return next_online_pgdat(pgdat);}static void frag_stop(struct seq_file *m, void *arg){}/* Walk all the zones in a node and print using a callback */static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,		void (*print)(struct seq_file *m, pg_data_t *, struct zone *)){	struct zone *zone;	struct zone *node_zones = pgdat->node_zones;	unsigned long flags;	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {		if (!populated_zone(zone))			continue;		spin_lock_irqsave(&zone->lock, flags);		print(m, pgdat, zone);		spin_unlock_irqrestore(&zone->lock, flags);	}}static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,						struct zone *zone){	int order;	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);	for (order = 0; order < MAX_ORDER; ++order)		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);	seq_putc(m, '\n');}/* * This walks the free areas for each zone. */static int frag_show(struct seq_file *m, void *arg){	pg_data_t *pgdat = (pg_data_t *)arg;	walk_zones_in_node(m, pgdat, frag_show_print);	return 0;}static void pagetypeinfo_showfree_print(struct seq_file *m,					pg_data_t *pgdat, struct zone *zone){	int order, mtype;	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {		seq_printf(m, "Node %4d, zone %8s, type %12s ",					pgdat->node_id,					zone->name,					migratetype_names[mtype]);		for (order = 0; order < MAX_ORDER; ++order) {			unsigned long freecount = 0;			struct free_area *area;			struct list_head *curr;			area = &(zone->free_area[order]);			list_for_each(curr, &area->free_list[mtype])				freecount++;			seq_printf(m, "%6lu ", freecount);		}		seq_putc(m, '\n');	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -