📄 migrate.c
字号:
/* * Memory Migration functionality - linux/mm/migration.c * * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter * * Page migration was first developed in the context of the memory hotplug * project. The main authors of the migration code are: * * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> * Hirokazu Takahashi <taka@valinux.co.jp> * Dave Hansen <haveblue@us.ibm.com> * Christoph Lameter */#include <linux/migrate.h>#include <linux/module.h>#include <linux/swap.h>#include <linux/swapops.h>#include <linux/pagemap.h>#include <linux/buffer_head.h>#include <linux/mm_inline.h>#include <linux/nsproxy.h>#include <linux/pagevec.h>#include <linux/rmap.h>#include <linux/topology.h>#include <linux/cpu.h>#include <linux/cpuset.h>#include <linux/writeback.h>#include <linux/mempolicy.h>#include <linux/vmalloc.h>#include <linux/security.h>#include <linux/memcontrol.h>#include <linux/syscalls.h>#include "internal.h"#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))/* * migrate_prep() needs to be called before we start compiling a list of pages * to be migrated using isolate_lru_page(). */int migrate_prep(void){ /* * Clear the LRU lists so pages can be isolated. * Note that pages may be moved off the LRU after we have * drained them. Those pages will fail to migrate like other * pages that may be busy. */ lru_add_drain_all(); return 0;}/* * Add isolated pages on the list back to the LRU under page lock * to avoid leaking evictable pages back onto unevictable list. * * returns the number of pages put back. */int putback_lru_pages(struct list_head *l){ struct page *page; struct page *page2; int count = 0; list_for_each_entry_safe(page, page2, l, lru) { list_del(&page->lru); putback_lru_page(page); count++; } return count;}/* * Restore a potential migration pte to a working pte entry */static void remove_migration_pte(struct vm_area_struct *vma, struct page *old, struct page *new){ struct mm_struct *mm = vma->vm_mm; swp_entry_t entry; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; spinlock_t *ptl; unsigned long addr = page_address_in_vma(new, vma); if (addr == -EFAULT) return; pgd = pgd_offset(mm, addr); if (!pgd_present(*pgd)) return; pud = pud_offset(pgd, addr); if (!pud_present(*pud)) return; pmd = pmd_offset(pud, addr); if (!pmd_present(*pmd)) return; ptep = pte_offset_map(pmd, addr); if (!is_swap_pte(*ptep)) { pte_unmap(ptep); return; } ptl = pte_lockptr(mm, pmd); spin_lock(ptl); pte = *ptep; if (!is_swap_pte(pte)) goto out; entry = pte_to_swp_entry(pte); if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) goto out; get_page(new); pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); if (is_write_migration_entry(entry)) pte = pte_mkwrite(pte); flush_cache_page(vma, addr, pte_pfn(pte)); set_pte_at(mm, addr, ptep, pte); if (PageAnon(new)) page_add_anon_rmap(new, vma, addr); else page_add_file_rmap(new); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, addr, pte);out: pte_unmap_unlock(ptep, ptl);}/* * Note that remove_file_migration_ptes will only work on regular mappings, * Nonlinear mappings do not use migration entries. */static void remove_file_migration_ptes(struct page *old, struct page *new){ struct vm_area_struct *vma; struct address_space *mapping = page_mapping(new); struct prio_tree_iter iter; pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); if (!mapping) return; spin_lock(&mapping->i_mmap_lock); vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) remove_migration_pte(vma, old, new); spin_unlock(&mapping->i_mmap_lock);}/* * Must hold mmap_sem lock on at least one of the vmas containing * the page so that the anon_vma cannot vanish. */static void remove_anon_migration_ptes(struct page *old, struct page *new){ struct anon_vma *anon_vma; struct vm_area_struct *vma; unsigned long mapping; mapping = (unsigned long)new->mapping; if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) return; /* * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. */ anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); spin_lock(&anon_vma->lock); list_for_each_entry(vma, &anon_vma->head, anon_vma_node) remove_migration_pte(vma, old, new); spin_unlock(&anon_vma->lock);}/* * Get rid of all migration entries and replace them by * references to the indicated page. */static void remove_migration_ptes(struct page *old, struct page *new){ if (PageAnon(new)) remove_anon_migration_ptes(old, new); else remove_file_migration_ptes(old, new);}/* * Something used the pte of a page under migration. We need to * get to the page and wait until migration is finished. * When we return from this function the fault will be retried. * * This function is called from do_swap_page(). */void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address){ pte_t *ptep, pte; spinlock_t *ptl; swp_entry_t entry; struct page *page; ptep = pte_offset_map_lock(mm, pmd, address, &ptl); pte = *ptep; if (!is_swap_pte(pte)) goto out; entry = pte_to_swp_entry(pte); if (!is_migration_entry(entry)) goto out; page = migration_entry_to_page(entry); /* * Once radix-tree replacement of page migration started, page_count * *must* be zero. And, we don't want to call wait_on_page_locked() * against a page without get_page(). * So, we use get_page_unless_zero(), here. Even failed, page fault * will occur again. */ if (!get_page_unless_zero(page)) goto out; pte_unmap_unlock(ptep, ptl); wait_on_page_locked(page); put_page(page); return;out: pte_unmap_unlock(ptep, ptl);}/* * Replace the page in the mapping. * * The number of remaining references must be: * 1 for anonymous pages without a mapping * 2 for pages with a mapping * 3 for pages with a mapping and PagePrivate set. */static int migrate_page_move_mapping(struct address_space *mapping, struct page *newpage, struct page *page){ int expected_count; void **pslot; if (!mapping) { /* Anonymous page without mapping */ if (page_count(page) != 1) return -EAGAIN; return 0; } spin_lock_irq(&mapping->tree_lock); pslot = radix_tree_lookup_slot(&mapping->page_tree, page_index(page)); expected_count = 2 + !!PagePrivate(page); if (page_count(page) != expected_count || (struct page *)radix_tree_deref_slot(pslot) != page) { spin_unlock_irq(&mapping->tree_lock); return -EAGAIN; } if (!page_freeze_refs(page, expected_count)) { spin_unlock_irq(&mapping->tree_lock); return -EAGAIN; } /* * Now we know that no one else is looking at the page. */ get_page(newpage); /* add cache reference */ if (PageSwapCache(page)) { SetPageSwapCache(newpage); set_page_private(newpage, page_private(page)); } radix_tree_replace_slot(pslot, newpage); page_unfreeze_refs(page, expected_count); /* * Drop cache reference from old page. * We know this isn't the last reference. */ __put_page(page); /* * If moved to a different zone then also account * the page for that zone. Other VM counters will be * taken care of when we establish references to the * new page and drop references to the old page. * * Note that anonymous pages are accounted for * via NR_FILE_PAGES and NR_ANON_PAGES if they * are mapped to swap space. */ __dec_zone_page_state(page, NR_FILE_PAGES); __inc_zone_page_state(newpage, NR_FILE_PAGES); spin_unlock_irq(&mapping->tree_lock); return 0;}/* * Copy the page to its new location */static void migrate_page_copy(struct page *newpage, struct page *page){ int anon; copy_highpage(newpage, page); if (PageError(page)) SetPageError(newpage); if (PageReferenced(page)) SetPageReferenced(newpage); if (PageUptodate(page)) SetPageUptodate(newpage); if (TestClearPageActive(page)) { VM_BUG_ON(PageUnevictable(page)); SetPageActive(newpage); } else unevictable_migrate_page(newpage, page); if (PageChecked(page)) SetPageChecked(newpage); if (PageMappedToDisk(page)) SetPageMappedToDisk(newpage); if (PageDirty(page)) { clear_page_dirty_for_io(page); /* * Want to mark the page and the radix tree as dirty, and * redo the accounting that clear_page_dirty_for_io undid, * but we can't use set_page_dirty because that function * is actually a signal that all of the page has become dirty. * Wheras only part of our page may be dirty. */ __set_page_dirty_nobuffers(newpage); } mlock_migrate_page(newpage, page); ClearPageSwapCache(page); ClearPagePrivate(page); set_page_private(page, 0); /* page->mapping contains a flag for PageAnon() */ anon = PageAnon(page); page->mapping = NULL; /* * If any waiters have accumulated on the new page then * wake them up. */ if (PageWriteback(newpage)) end_page_writeback(newpage);}/************************************************************ * Migration functions ***********************************************************//* Always fail migration. Used for mappings that are not movable */int fail_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page){ return -EIO;}EXPORT_SYMBOL(fail_migrate_page);/* * Common logic to directly migrate a single page suitable for * pages that do not use PagePrivate. * * Pages are locked upon entry and exit. */int migrate_page(struct address_space *mapping, struct page *newpage, struct page *page){ int rc; BUG_ON(PageWriteback(page)); /* Writeback must be complete */ rc = migrate_page_move_mapping(mapping, newpage, page); if (rc) return rc; migrate_page_copy(newpage, page); return 0;}EXPORT_SYMBOL(migrate_page);#ifdef CONFIG_BLOCK/* * Migration function for pages with buffers. This function can only be used * if the underlying filesystem guarantees that no other references to "page" * exist. */int buffer_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page){ struct buffer_head *bh, *head; int rc; if (!page_has_buffers(page)) return migrate_page(mapping, newpage, page); head = page_buffers(page); rc = migrate_page_move_mapping(mapping, newpage, page); if (rc) return rc; bh = head; do { get_bh(bh); lock_buffer(bh); bh = bh->b_this_page; } while (bh != head); ClearPagePrivate(page); set_page_private(newpage, page_private(page)); set_page_private(page, 0); put_page(page); get_page(newpage); bh = head; do { set_bh_page(bh, newpage, bh_offset(bh)); bh = bh->b_this_page; } while (bh != head); SetPagePrivate(newpage); migrate_page_copy(newpage, page); bh = head; do { unlock_buffer(bh); put_bh(bh); bh = bh->b_this_page; } while (bh != head); return 0;}EXPORT_SYMBOL(buffer_migrate_page);#endif/* * Writeback a page to clean the dirty state */static int writeout(struct address_space *mapping, struct page *page){ struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, .nr_to_write = 1, .range_start = 0, .range_end = LLONG_MAX, .nonblocking = 1, .for_reclaim = 1 }; int rc; if (!mapping->a_ops->writepage) /* No write method for the address space */ return -EINVAL; if (!clear_page_dirty_for_io(page)) /* Someone else already triggered a write */ return -EAGAIN; /* * A dirty page may imply that the underlying filesystem has * the page on some queue. So the page must be clean for * migration. Writeout may mean we loose the lock and the * page state is no longer what we checked for earlier. * At this point we know that the migration attempt cannot * be successful. */ remove_migration_ptes(page, page); rc = mapping->a_ops->writepage(page, &wbc); if (rc != AOP_WRITEPAGE_ACTIVATE) /* unlocked. Relock */ lock_page(page); return (rc < 0) ? -EIO : -EAGAIN;}/* * Default handling if a filesystem does not provide a migration function. */static int fallback_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page){ if (PageDirty(page)) return writeout(mapping, page); /* * Buffers may be managed in a filesystem specific way. * We must have no buffers or drop them. */ if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) return -EAGAIN; return migrate_page(mapping, newpage, page);}/* * Move a page to a newly allocated page * The page is locked and all ptes have been successfully removed. * * The new page will have replaced the old page if this function * is successful. * * Return value: * < 0 - error code * == 0 - success */static int move_to_new_page(struct page *newpage, struct page *page){ struct address_space *mapping; int rc; /* * Block others from accessing the page when we get around to * establishing additional references. We are the only one * holding a reference to the new page at this point. */ if (!trylock_page(newpage)) BUG(); /* Prepare mapping for the new page.*/ newpage->index = page->index; newpage->mapping = page->mapping; if (PageSwapBacked(page)) SetPageSwapBacked(newpage); mapping = page_mapping(page); if (!mapping) rc = migrate_page(mapping, newpage, page); else if (mapping->a_ops->migratepage) /* * Most pages have a mapping and most filesystems * should provide a migration function. Anonymous * pages are part of swap space which also has its * own migration function. This is the most common * path for page migration.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -