📄 ch4_1h.m
字号:
% Select a demo number: 9
% In this demo we consider spectrum estimation, using Marple's
% test case (The complex data in L. Marple: S.L. Marple, Jr,
% Digital Spectral Analysis with Applications, Prentice-Hall,
% Englewood Cliffs, NJ 1987.)
load marple
% Most of the routines in the SITB support complex data.
% For plotting we examine the real and imaginary parts of
% the data separately, however.
% First, take a look at the data:
% Press a key for plot.
subplot(211),plot(real(marple)),title('Real part of data.')
subplot(212),plot(imag(marple)),title('Imaginary part of data.')
% Let's first check the periodogram of the data;
per = etfe(marple);
figure,ffplot(per)
% The spectrum can also be plotted with logarithmic frequency scale
% as a bodeplot:
figure,bode(per)
% Since the data record is only 64 samples, and the periodogram is
% computed for 128 frequencies, we clearly see the oscilla-
% tions from the narrow frequency window. We therefore apply some
% smoothing to the periodogram (corresponding to a frequency resolution
% of 1/32 Hz):
sp = etfe(marple,32);
figure,ffplot(per,sp)
% Let's now try the Blackman-Tukey approach to spectrum estimation:
ssm = spa(marple);
figure,ffplot(sp,'b',ssm,'g')
% Blue: Smoothed periodogram.
% Green: Blackman-Tukey estimate.
% The default window length gives a very narrow lag window for this
% small amount of data. We can choose a larger lag window by
ss20 = spa(marple,20);
figure,ffplot(sp,ss20)
% Blue/solid: Smoothed periodogram.
% Green/dashed: Blackman-Tukey estimate.
% A parametric 5-order AR-model is computed by
t5 = ar(marple,5);
% Compare with the periodogram estimate:
figure,ffplot(sp,'b',t5,'g')
% Blue Smoothed periodogram.
% Green 5th order AR estimate.
% The AR-command in fact covers 20 different methods for
% spectrum estimation. The above one was what is known
% as 'the modified covariance estimate' in Marple's book.
% Some other well known ones are obtained with:
tb5 = ar(marple,5,'burg'); % Burg's method
ty5 = ar(marple,5,'yw'); % The Yule-Walker method
figure,ffplot(t5,tb5,ty5)
% blue: Modified covariance
% green: Burg
% red: Yule-Walker
% AR-modeling can also be done using the Instrumental
% Variable approach:
ti = ivar(marple,4);
figure,ffplot(t5,ti)
% blue: Modified covariance
% green: Instrumental Variable
% Furthermore, the SITB covers ARMA-modeling of spectra:
ta44 = armax(marple,[4 4]); % 4 AR-parameters and 4 MA-parameters
figure,ffplot(t5,ta44)
% blue: Modified covariance
% green: ARMA
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -