⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k_means_cluster

📁 this program explains the K_means cluster Algorithm. and also direct to the best k value
💻
字号:
k-means Cluster Anlysis Algorithm.Description : The package aims at providing an implementation of k-means Clustering Algorithm in Java. The package does not provide for any UI and it is up to the user to display the output in the required format.---------------JCA.java-------------package org.c4s.algorithm.cluster;import java.util.Vector;/**This class is the entry point for constructing Cluster Analysis objects.Each instance of JCA object is associated with one or more clusters, and a Vector of DataPoint objects. The JCA and DataPoint classes arethe only classes available from other packages.@see DataPoint**/public class JCA {    private Cluster[] clusters;    private int miter;    private Vector mDataPoints = new Vector();    private double mSWCSS;    public JCA(int k, int iter, Vector dataPoints) {        clusters = new Cluster[k];        for (int i = 0; i < k; i++) {            clusters[i] = new Cluster("Cluster" + i);        }        this.miter = iter;        this.mDataPoints = dataPoints;    }    private void calcSWCSS() {        double temp = 0;        for (int i = 0; i < clusters.length; i++) {            temp = temp + clusters[i].getSumSqr();        }        mSWCSS = temp;    }    public void startAnalysis() {        //set Starting centroid positions - Start of Step 1        setInitialCentroids();        int n = 0;        //assign DataPoint to clusters        loop1: while (true) {            for (int l = 0; l < clusters.length; l++)             {                clusters[l].addDataPoint((DataPoint)mDataPoints.elementAt(n));                n++;                if (n >= mDataPoints.size())                    break loop1;            }        }                //calculate E for all the clusters        calcSWCSS();                //recalculate Cluster centroids - Start of Step 2        for (int i = 0; i < clusters.length; i++) {            clusters[i].getCentroid().calcCentroid();        }                //recalculate E for all the clusters        calcSWCSS();        for (int i = 0; i < miter; i++) {            //enter the loop for cluster 1            for (int j = 0; j < clusters.length; j++) {                for (int k = 0; k < clusters[j].getNumDataPoints(); k++) {                                    //pick the first element of the first cluster                    //get the current Euclidean distance                    double tempEuDt = clusters[j].getDataPoint(k).getCurrentEuDt();                    Cluster tempCluster = null;                    boolean matchFoundFlag = false;                                        //call testEuclidean distance for all clusters                    for (int l = 0; l < clusters.length; l++) {                                        //if testEuclidean < currentEuclidean then                        if (tempEuDt > clusters[j].getDataPoint(k).testEuclideanDistance(clusters[l].getCentroid())) {                            tempEuDt = clusters[j].getDataPoint(k).testEuclideanDistance(clusters[l].getCentroid());                            tempCluster = clusters[l];                            matchFoundFlag = true;                        }                        //if statement - Check whether the Last EuDt is > Present EuDt                                                 }//for variable 'l' - Looping between different Clusters for matching a Data Point.//add DataPoint to the cluster and calcSWCSS       if (matchFoundFlag) {		tempCluster.addDataPoint(clusters[j].getDataPoint(k));		clusters[j].removeDataPoint(clusters[j].getDataPoint(k));                        for (int m = 0; m < clusters.length; m++) {                            clusters[m].getCentroid().calcCentroid();                        }//for variable 'm' - Recalculating centroids for all Clusters                        calcSWCSS();                    }                    //if statement - A Data Point is eligible for transfer between Clusters.                }                //for variable 'k' - Looping through all Data Points of the current Cluster.            }//for variable 'j' - Looping through all the Clusters.        }//for variable 'i' - Number of iterations.    }    public Vector[] getClusterOutput() {        Vector v[] = new Vector[clusters.length];        for (int i = 0; i < clusters.length; i++) {            v[i] = clusters[i].getDataPoints();        }        return v;    }    private void setInitialCentroids() {        //kn = (round((max-min)/k)*n)+min where n is from 0 to (k-1).        double cx = 0, cy = 0;        for (int n = 1; n <= clusters.length; n++) {            cx = (((getMaxXValue() - getMinXValue()) / (clusters.length + 1)) * n) + getMinXValue();            cy = (((getMaxYValue() - getMinYValue()) / (clusters.length + 1)) * n) + getMinYValue();            Centroid c1 = new Centroid(cx, cy);            clusters[n - 1].setCentroid(c1);            c1.setCluster(clusters[n - 1]);        }    }    private double getMaxXValue() {        double temp;        temp = ((DataPoint) mDataPoints.elementAt(0)).getX();        for (int i = 0; i < mDataPoints.size(); i++) {            DataPoint dp = (DataPoint) mDataPoints.elementAt(i);            temp = (dp.getX() > temp) ? dp.getX() : temp;        }        return temp;    }    private double getMinXValue() {        double temp = 0;        temp = ((DataPoint) mDataPoints.elementAt(0)).getX();        for (int i = 0; i < mDataPoints.size(); i++) {            DataPoint dp = (DataPoint) mDataPoints.elementAt(i);            temp = (dp.getX() < temp) ? dp.getX() : temp;        }        return temp;    }    private double getMaxYValue() {        double temp = 0;        temp = ((DataPoint) mDataPoints.elementAt(0)).getY();        for (int i = 0; i < mDataPoints.size(); i++) {            DataPoint dp = (DataPoint) mDataPoints.elementAt(i);            temp = (dp.getY() > temp) ? dp.getY() : temp;        }        return temp;    }    private double getMinYValue() {        double temp = 0;        temp = ((DataPoint) mDataPoints.elementAt(0)).getY();        for (int i = 0; i < mDataPoints.size(); i++) {            DataPoint dp = (DataPoint) mDataPoints.elementAt(i);            temp = (dp.getY() < temp) ? dp.getY() : temp;        }        return temp;    }    public int getKValue() {        return clusters.length;    }    public int getIterations() {        return miter;    }    public int getTotalDataPoints() {        return mDataPoints.size();    }    public double getSWCSS() {        return mSWCSS;    }    public Cluster getCluster(int pos) {        return clusters[pos];    }}/*-----------------Cluster.java----------------*/package org.c4s.algorithm.cluster;import java.util.Vector;/** * This class represents a Cluster in a Cluster Analysis Instance. A Cluster is associated * with one and only one JCA Instance. A Cluster is related to more than one DataPoints and * one centroid. * @author Shyam Sivaraman * @version 1.1 * @see DataPoint * @see Centroid */class Cluster {    private String mName;    private Centroid mCentroid;    private double mSumSqr;    private Vector mDataPoints;    public Cluster(String name) {        this.mName = name;        this.mCentroid = null; //will be set by calling setCentroid()        mDataPoints = new Vector();    }    public void setCentroid(Centroid c) {        mCentroid = c;    }    public Centroid getCentroid() {        return mCentroid;    }    public void addDataPoint(DataPoint dp) { //called from CAInstance        dp.setCluster(this); //initiates a inner call tocalcEuclideanDistance() in DP.        this.mDataPoints.addElement(dp);        calcSumOfSquares();    }    public void removeDataPoint(DataPoint dp) {        this.mDataPoints.removeElement(dp);        calcSumOfSquares();    }    public int getNumDataPoints() {        return this.mDataPoints.size();    }    public DataPoint getDataPoint(int pos) {        return (DataPoint) this.mDataPoints.elementAt(pos);    }    public void calcSumOfSquares() { //called from Centroid        int size = this.mDataPoints.size();        double temp = 0;        for (int i = 0; i < size; i++) {            temp = temp + ((DataPoint)this.mDataPoints.elementAt(i)).getCurrentEuDt();        }        this.mSumSqr = temp;    }    public double getSumSqr() {        return this.mSumSqr;    }    public String getName() {        return this.mName;    }    public Vector getDataPoints() {        return this.mDataPoints;    }}/*---------------Centroid.java-----------------*/package org.c4s.algorithm.cluster;/** * This class represents the Centroid for a Cluster. The initial centroid is calculated * using a equation which divides the sample space for each dimension into equal parts * depending upon the value of k. * @author Shyam Sivaraman * @version 1.0 * @see Cluster */class Centroid {    private double mCx, mCy;    private Cluster mCluster;    public Centroid(double cx, double cy) {        this.mCx = cx;        this.mCy = cy;    }    public void calcCentroid() { //only called by CAInstance        int numDP = mCluster.getNumDataPoints();        double tempX = 0, tempY = 0;        int i;        //caluclating the new Centroid        for (i = 0; i < numDP; i++) {            tempX = tempX + mCluster.getDataPoint(i).getX();             //total for x            tempY = tempY + mCluster.getDataPoint(i).getY();             //total for y        }        this.mCx = tempX / numDP;        this.mCy = tempY / numDP;        //calculating the new Euclidean Distance for each Data Point        tempX = 0;        tempY = 0;        for (i = 0; i < numDP; i++) {            mCluster.getDataPoint(i).calcEuclideanDistance();        }        //calculate the new Sum of Squares for the Cluster        mCluster.calcSumOfSquares();    }    public void setCluster(Cluster c) {        this.mCluster = c;    }    public double getCx() {        return mCx;    }    public double getCy() {        return mCy;    }    public Cluster getCluster() {        return mCluster;    }}/*----------------DataPoint.java----------------*/package org.c4s.algorithm.cluster;/**    This class represents a candidate for Cluster analysis. A candidate must have    a name and two independent variables on the basis of which it is to be clustered.    A Data Point must have two variables and a name. A Vector of  Data Point object    is fed into the constructor of the JCA class. JCA and DataPoint are the only    classes which may be available from other packages.    @author Shyam Sivaraman    @version 1.0    @see JCA    @see Cluster*/public class DataPoint {    private double mX,mY;    private String mObjName;    private Cluster mCluster;    private double mEuDt;    public DataPoint(double x, double y, String name) {        this.mX = x;        this.mY = y;        this.mObjName = name;        this.mCluster = null;    }    public void setCluster(Cluster cluster) {        this.mCluster = cluster;        calcEuclideanDistance();    }    public void calcEuclideanDistance() {         //called when DP is added to a cluster or when a Centroid is recalculated.        mEuDt = Math.sqrt(Math.pow((mX - mCluster.getCentroid().getCx()),2) + Math.pow((mY - mCluster.getCentroid().getCy()), 2));    }    public double testEuclideanDistance(Centroid c) {        return Math.sqrt(Math.pow((mX - c.getCx()), 2) + Math.pow((mY - c.getCy()), 2));    }    public double getX() {        return mX;    }    public double getY() {        return mY;    }    public Cluster getCluster() {        return mCluster;    }    public double getCurrentEuDt() {        return mEuDt;    }    public String getObjName() {        return mObjName;    }}/*-----------------PrgMain.java---------------*/import org.c4s.algorithm.cluster.DataPoint;import org.c4s.algorithm.cluster.JCA;import java.util.Vector;import java.util.Iterator;/** * Created by IntelliJ IDEA. * User: shyam.s * Date: Apr 18, 2004 * Time: 4:26:06 PM */public class PrgMain {    public static void main (String args[]){        Vector dataPoints = new Vector();        dataPoints.add(new DataPoint(22,21,"p53"));        dataPoints.add(new DataPoint(19,20,"bcl2"));        dataPoints.add(new DataPoint(18,22,"fas"));        dataPoints.add(new DataPoint(1,3,"amylase"));        dataPoints.add(new DataPoint(3,2,"maltase"));        JCA jca = new JCA(2,1000,dataPoints);        jca.startAnalysis();        Vector[] v = jca.getClusterOutput();        for (int i=0; i<v.length; i++){            Vector tempV = v[i];            System.out.println("-----------Cluster"+i+"---------");            Iterator iter = tempV.iterator();            while(iter.hasNext()){                DataPoint dpTemp = (DataPoint)iter.next();                System.out.println(dpTemp.getObjName()+"["+dpTemp.getX()+","+dpTemp.getY()+"]");            }        }    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -