⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 misc.h

📁 AlgorithmType: SymmetricCipher Name: AES/ECB Source: NIST Special Publication 800-38A Plaintext:
💻 H
📖 第 1 页 / 共 2 页
字号:
template<> inline word16 rotrMod<word16>(word16 x, unsigned int y)
{
	return _rotr16(x, y);
}

template<> inline byte rotlFixed<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotl8(x, y) : x;
}

template<> inline byte rotrFixed<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotr8(x, y) : x;
}

template<> inline byte rotlVariable<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotl8(x, y);
}

template<> inline byte rotrVariable<byte>(byte x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotr8(x, y);
}

template<> inline byte rotlMod<byte>(byte x, unsigned int y)
{
	return _rotl8(x, y);
}

template<> inline byte rotrMod<byte>(byte x, unsigned int y)
{
	return _rotr8(x, y);
}

#endif // #if _MSC_VER >= 1400

#if (defined(__MWERKS__) && TARGET_CPU_PPC)

template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return y ? __rlwinm(x,y,0,31) : x;
}

template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return y ? __rlwinm(x,32-y,0,31) : x;
}

template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return (__rlwnm(x,y,0,31));
}

template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return (__rlwnm(x,32-y,0,31));
}

template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
	return (__rlwnm(x,y,0,31));
}

template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
	return (__rlwnm(x,32-y,0,31));
}

#endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC)

// ************** endian reversal ***************

template <class T>
inline unsigned int GetByte(ByteOrder order, T value, unsigned int index)
{
	if (order == LITTLE_ENDIAN_ORDER)
		return GETBYTE(value, index);
	else
		return GETBYTE(value, sizeof(T)-index-1);
}

inline byte ByteReverse(byte value)
{
	return value;
}

inline word16 ByteReverse(word16 value)
{
#ifdef CRYPTOPP_BYTESWAP_AVAILABLE
	return bswap_16(value);
#elif defined(_MSC_VER) && _MSC_VER >= 1300
	return _byteswap_ushort(value);
#else
	return rotlFixed(value, 8U);
#endif
}

inline word32 ByteReverse(word32 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE)
	__asm__ ("bswap %0" : "=r" (value) : "0" (value));
	return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
	return bswap_32(value);
#elif defined(__MWERKS__) && TARGET_CPU_PPC
	return (word32)__lwbrx(&value,0);
#elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL))
	return _byteswap_ulong(value);
#elif CRYPTOPP_FAST_ROTATE(32)
	// 5 instructions with rotate instruction, 9 without
	return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff);
#else
	// 6 instructions with rotate instruction, 8 without
	value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
	return rotlFixed(value, 16U);
#endif
}

#ifdef WORD64_AVAILABLE
inline word64 ByteReverse(word64 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__)
	__asm__ ("bswap %0" : "=r" (value) : "0" (value));
	return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
	return bswap_64(value);
#elif defined(_MSC_VER) && _MSC_VER >= 1300
	return _byteswap_uint64(value);
#elif defined(CRYPTOPP_SLOW_WORD64)
	return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32));
#else
	value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
	value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
	return rotlFixed(value, 32U);
#endif
}
#endif

inline byte BitReverse(byte value)
{
	value = ((value & 0xAA) >> 1) | ((value & 0x55) << 1);
	value = ((value & 0xCC) >> 2) | ((value & 0x33) << 2);
	return rotlFixed(value, 4U);
}

inline word16 BitReverse(word16 value)
{
	value = ((value & 0xAAAA) >> 1) | ((value & 0x5555) << 1);
	value = ((value & 0xCCCC) >> 2) | ((value & 0x3333) << 2);
	value = ((value & 0xF0F0) >> 4) | ((value & 0x0F0F) << 4);
	return ByteReverse(value);
}

inline word32 BitReverse(word32 value)
{
	value = ((value & 0xAAAAAAAA) >> 1) | ((value & 0x55555555) << 1);
	value = ((value & 0xCCCCCCCC) >> 2) | ((value & 0x33333333) << 2);
	value = ((value & 0xF0F0F0F0) >> 4) | ((value & 0x0F0F0F0F) << 4);
	return ByteReverse(value);
}

#ifdef WORD64_AVAILABLE
inline word64 BitReverse(word64 value)
{
#ifdef CRYPTOPP_SLOW_WORD64
	return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32));
#else
	value = ((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | ((value & W64LIT(0x5555555555555555)) << 1);
	value = ((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | ((value & W64LIT(0x3333333333333333)) << 2);
	value = ((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | ((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4);
	return ByteReverse(value);
#endif
}
#endif

template <class T>
inline T BitReverse(T value)
{
	if (sizeof(T) == 1)
		return (T)BitReverse((byte)value);
	else if (sizeof(T) == 2)
		return (T)BitReverse((word16)value);
	else if (sizeof(T) == 4)
		return (T)BitReverse((word32)value);
	else
	{
#ifdef WORD64_AVAILABLE
		assert(sizeof(T) == 8);
		return (T)BitReverse((word64)value);
#else
		assert(false);
		return 0;
#endif
	}
}

template <class T>
inline T ConditionalByteReverse(ByteOrder order, T value)
{
	return NativeByteOrderIs(order) ? value : ByteReverse(value);
}

template <class T>
void ByteReverse(T *out, const T *in, size_t byteCount)
{
	assert(byteCount % sizeof(T) == 0);
	size_t count = byteCount/sizeof(T);
	for (size_t i=0; i<count; i++)
		out[i] = ByteReverse(in[i]);
}

template <class T>
inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount)
{
	if (!NativeByteOrderIs(order))
		ByteReverse(out, in, byteCount);
	else if (in != out)
		memcpy_s(out, byteCount, in, byteCount);
}

template <class T>
inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
{
	const size_t U = sizeof(T);
	assert(inlen <= outlen*U);
	memcpy(out, in, inlen);
	memset((byte *)out+inlen, 0, outlen*U-inlen);
	ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U));
}

#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *)
{
	return block[0];
}

inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *)
{
	return (order == BIG_ENDIAN_ORDER)
		? block[1] | (block[0] << 8)
		: block[0] | (block[1] << 8);
}

inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *)
{
	return (order == BIG_ENDIAN_ORDER)
		? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24)
		: word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24);
}

#ifdef WORD64_AVAILABLE
inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *)
{
	return (order == BIG_ENDIAN_ORDER)
		?
		(word64(block[7]) |
		(word64(block[6]) <<  8) |
		(word64(block[5]) << 16) |
		(word64(block[4]) << 24) |
		(word64(block[3]) << 32) |
		(word64(block[2]) << 40) |
		(word64(block[1]) << 48) |
		(word64(block[0]) << 56))
		:
		(word64(block[0]) |
		(word64(block[1]) <<  8) |
		(word64(block[2]) << 16) |
		(word64(block[3]) << 24) |
		(word64(block[4]) << 32) |
		(word64(block[5]) << 40) |
		(word64(block[6]) << 48) |
		(word64(block[7]) << 56));
}
#endif

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock)
{
	block[0] = xorBlock ? (value ^ xorBlock[0]) : value;
}

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
		}
	}
}

inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
		}
	}
}

#ifdef WORD64_AVAILABLE
inline void UnalignedPutWordNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
		}
	}
}
#endif
#endif	// #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS

template <class T>
inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
{
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	if (!assumeAligned)
		return UnalignedGetWordNonTemplate(order, block, (T*)NULL);
	assert(IsAligned<T>(block));
#endif
	return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block));
}

template <class T>
inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block)
{
	result = GetWord<T>(assumeAligned, order, block);
}

template <class T>
inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL)
{
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	if (!assumeAligned)
		return UnalignedPutWordNonTemplate(order, block, value, xorBlock);
	assert(IsAligned<T>(block));
	assert(IsAligned<T>(xorBlock));
#endif
	*reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0);
}

template <class T, class B, bool A=true>
class GetBlock
{
public:
	GetBlock(const void *block)
		: m_block((const byte *)block) {}

	template <class U>
	inline GetBlock<T, B, A> & operator()(U &x)
	{
		CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
		x = GetWord<T>(A, B::ToEnum(), m_block);
		m_block += sizeof(T);
		return *this;
	}

private:
	const byte *m_block;
};

template <class T, class B, bool A=false>
class PutBlock
{
public:
	PutBlock(const void *xorBlock, void *block)
		: m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}

	template <class U>
	inline PutBlock<T, B, A> & operator()(U x)
	{
		PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
		m_block += sizeof(T);
		if (m_xorBlock)
			m_xorBlock += sizeof(T);
		return *this;
	}

private:
	const byte *m_xorBlock;
	byte *m_block;
};

template <class T, class B, bool GA=true, bool PA=false>
struct BlockGetAndPut
{
	// function needed because of C++ grammatical ambiguity between expression-statements and declarations
	static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);}
	typedef PutBlock<T, B, PA> Put;
};

template <class T>
std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER)
{
	if (!NativeByteOrderIs(order))
		value = ByteReverse(value);

	return std::string((char *)&value, sizeof(value));
}

template <class T>
T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER)
{
	T value = 0;
	memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value)));
	return NativeByteOrderIs(order) ? value : ByteReverse(value);
}

// ************** help remove warning on g++ ***************

template <bool overflow> struct SafeShifter;

template<> struct SafeShifter<true>
{
	template <class T>
	static inline T RightShift(T value, unsigned int bits)
	{
		return 0;
	}

	template <class T>
	static inline T LeftShift(T value, unsigned int bits)
	{
		return 0;
	}
};

template<> struct SafeShifter<false>
{
	template <class T>
	static inline T RightShift(T value, unsigned int bits)
	{
		return value >> bits;
	}

	template <class T>
	static inline T LeftShift(T value, unsigned int bits)
	{
		return value << bits;
	}
};

template <unsigned int bits, class T>
inline T SafeRightShift(T value)
{
	return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
}

template <unsigned int bits, class T>
inline T SafeLeftShift(T value)
{
	return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
}

NAMESPACE_END

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -