📄 memory.c
字号:
#include "../../kernel.h"#include "../../proc.h"#include <minix/type.h>#include <string.h>#include <sys/vm.h>#include <minix/portio.h>#include "proto.h"/* VM functions and data. */PRIVATE int vm_needs_init= 1;PRIVATE u32_t vm_cr3;FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value) );FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr) );FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value) );FORWARD _PROTOTYPE( void set_cr3, (void) );FORWARD _PROTOTYPE( void vm_enable_paging, (void) );/* *** Internal VM Functions *** */PUBLIC void vm_init(void){ int o; phys_bytes p, pt_size; phys_bytes vm_dir_base, vm_pt_base, phys_mem; u32_t entry; unsigned pages; if (!vm_size) panic("i386_vm_init: no space for page tables", NO_NUM); /* Align page directory */ o= (vm_base % PAGE_SIZE); if (o != 0) o= PAGE_SIZE-o; vm_dir_base= vm_base+o; /* Page tables start after the page directory */ vm_pt_base= vm_dir_base+PAGE_SIZE; pt_size= (vm_base+vm_size)-vm_pt_base; pt_size -= (pt_size % PAGE_SIZE); /* Compute the number of pages based on vm_mem_high */ pages= (vm_mem_high-1)/PAGE_SIZE + 1; if (pages * I386_VM_PT_ENT_SIZE > pt_size) panic("i386_vm_init: page table too small", NO_NUM); for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++) { phys_mem= p*PAGE_SIZE; entry= phys_mem | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; if (phys_mem >= vm_mem_high) entry= 0; phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry); } for (p= 0; p < I386_VM_DIR_ENTRIES; p++) { phys_mem= vm_pt_base + p*PAGE_SIZE; entry= phys_mem | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT; if (phys_mem >= vm_pt_base + pt_size) entry= 0; phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry); } vm_set_cr3(vm_dir_base); level0(vm_enable_paging);}PRIVATE void phys_put32(addr, value)phys_bytes addr;u32_t value;{ phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value));}PRIVATE u32_t phys_get32(addr)phys_bytes addr;{ u32_t value; phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value)); return value;}PRIVATE void vm_set_cr3(value)u32_t value;{ vm_cr3= value; level0(set_cr3);}PRIVATE void set_cr3(){ write_cr3(vm_cr3);}PRIVATE void vm_enable_paging(void){ u32_t cr0; cr0= read_cr0(); write_cr0(cr0 | I386_CR0_PG);}PUBLIC void vm_map_range(base, size, offset)u32_t base;u32_t size;u32_t offset;{ u32_t curr_pt, curr_pt_addr, entry; int dir_ent, pt_ent; if (base % PAGE_SIZE != 0) panic("map_range: bad base", base); if (size % PAGE_SIZE != 0) panic("map_range: bad size", size); if (offset % PAGE_SIZE != 0) panic("map_range: bad offset", offset); curr_pt= -1; curr_pt_addr= 0; while (size != 0) { dir_ent= (base >> I386_VM_DIR_ENT_SHIFT); pt_ent= (base >> I386_VM_PT_ENT_SHIFT) & I386_VM_PT_ENT_MASK; if (dir_ent != curr_pt) { /* Get address of page table */ curr_pt= dir_ent; curr_pt_addr= phys_get32(vm_cr3 + dir_ent * I386_VM_PT_ENT_SIZE); curr_pt_addr &= I386_VM_ADDR_MASK; } entry= offset | I386_VM_USER | I386_VM_WRITE | I386_VM_PRESENT;#if 0 /* Do we need this for memory mapped I/O? */ entry |= I386_VM_PCD | I386_VM_PWT;#endif phys_put32(curr_pt_addr + pt_ent * I386_VM_PT_ENT_SIZE, entry); offset += PAGE_SIZE; base += PAGE_SIZE; size -= PAGE_SIZE; } /* reload root of page table. */ vm_set_cr3(vm_cr3);}PUBLIC vir_bytes alloc_remote_segment(u32_t *selector, segframe_t *segments, int index, phys_bytes phys, vir_bytes size, int priv){ phys_bytes offset = 0; /* Check if the segment size can be recorded in bytes, that is, check * if descriptor's limit field can delimited the allowed memory region * precisely. This works up to 1MB. If the size is larger, 4K pages * instead of bytes are used. */ if (size < BYTE_GRAN_MAX) { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys, size, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = 0; } else { init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index], phys & ~0xFFFF, 0, priv); *selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv; offset = phys & 0xFFFF; } return offset;}PUBLIC phys_bytes umap_remote(struct proc* rp, int seg, vir_bytes vir_addr, vir_bytes bytes){/* Calculate the physical memory address for a given virtual address. */ struct far_mem *fm; if (bytes <= 0) return( (phys_bytes) 0); if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0); fm = &rp->p_priv->s_farmem[seg]; if (! fm->in_use) return( (phys_bytes) 0); if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0); return(fm->mem_phys + (phys_bytes) vir_addr);}/*===========================================================================* * umap_local * *===========================================================================*/PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)register struct proc *rp; /* pointer to proc table entry for process */int seg; /* T, D, or S segment */vir_bytes vir_addr; /* virtual address in bytes within the seg */vir_bytes bytes; /* # of bytes to be copied */{/* Calculate the physical memory address for a given virtual address. */ vir_clicks vc; /* the virtual address in clicks */ phys_bytes pa; /* intermediate variables as phys_bytes */ phys_bytes seg_base; if (bytes <= 0) return( (phys_bytes) 0); if (vir_addr + bytes <= vir_addr) return 0; /* overflow */ vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ if (seg != T) seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); if (vc >= rp->p_memmap[seg].mem_vir + rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 ); seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys; seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ pa = (phys_bytes) vir_addr; pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; return(seg_base + pa);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -