📄 cmath4.c
字号:
/**********Copyright 1990 Regents of the University of California. All rights reserved.Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group**********//* * Routines to do complex mathematical functions. These routines require * the -lm libraries. We sacrifice a lot of space to be able * to avoid having to do a seperate call for every vector element, * but it pays off in time savings. These routines should never * allow FPE's to happen. * * Complex functions are called as follows: * cx_something(data, type, length, &newlength, &newtype), * and return a char * that is cast to complex or double. */#include "spice.h"#include "cpdefs.h"#include "ftedefs.h"#include "ftedata.h"#include "ftecmath.h"#include "suffix.h"char *cx_and(data1, data2, datatype1, datatype2, length) char *data1, *data2; short datatype1, datatype2;{ double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; complex *cc1 = (complex *) data1; complex *cc2 = (complex *) data2; complex c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) d[i] = dd1[i] && dd2[i]; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(&c1) = dd1[i]; imagpart(&c1) = 0.0; } else { realpart(&c1) = realpart(&cc1[i]); imagpart(&c1) = imagpart(&cc1[i]); } if (datatype2 == VF_REAL) { realpart(&c2) = dd2[i]; imagpart(&c2) = 0.0; } else { realpart(&c2) = realpart(&cc2[i]); imagpart(&c2) = imagpart(&cc2[i]); } d[i] = ((realpart(&c1) && realpart(&c2)) && (imagpart(&c1) && imagpart(&c2))); } } return ((char *) d);}char *cx_or(data1, data2, datatype1, datatype2, length) char *data1, *data2; short datatype1, datatype2;{ double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; complex *cc1 = (complex *) data1; complex *cc2 = (complex *) data2; complex c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) d[i] = dd1[i] || dd2[i]; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(&c1) = dd1[i]; imagpart(&c1) = 0.0; } else { realpart(&c1) = realpart(&cc1[i]); imagpart(&c1) = imagpart(&cc1[i]); } if (datatype2 == VF_REAL) { realpart(&c2) = dd2[i]; imagpart(&c2) = 0.0; } else { realpart(&c2) = realpart(&cc2[i]); imagpart(&c2) = imagpart(&cc2[i]); } d[i] = ((realpart(&c1) || realpart(&c2)) && (imagpart(&c1) || imagpart(&c2))); } } return ((char *) d);}char *cx_not(data, type, length, newlength, newtype) char *data; short type; int length; int *newlength; short *newtype;{ double *d; double *dd = (double *) data; complex *cc = (complex *) data; int i; d = alloc_d(length); *newtype = VF_REAL; *newlength = length; if (type == VF_COMPLEX) { for (i = 0; i < length; i++) { /* gcc doens't like !double */ d[i] = realpart(&cc[i]) ? 0 : 1; d[i] = imagpart(&cc[i]) ? 0 : 1; } } else { for (i = 0; i < length; i++) d[i] = ! dd[i]; } return ((char *) d);}/* This is a strange function. What we do is fit a polynomial to the * curve, of degree $polydegree, and then evaluate it at the points * in the time scale. What we do is this: for every set of points that * we fit a polynomial to, fill in as much of the new vector as we can * (i.e, between the last value of the old scale we went from to this * one). At the ends we just use what we have... We have to detect * badness here too... * Note that we pass arguments differently for this one cx_ function... */char *cx_interpolate(data, type, length, newlength, newtype, pl, newpl, grouping) char *data; short type; int length; int *newlength; short *newtype; struct plot *pl, *newpl; int grouping;{ struct dvec *ns, *os; double *d; int degree; register int i, oincreasing = 1, nincreasing = 1; int base; if (grouping == 0) grouping = length; /* First do some sanity checks. */ if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) { fprintf(cp_err, "Internal error: cx_interpolate: bad scale\n"); return (NULL); } ns = newpl->pl_scale; os = pl->pl_scale; if (iscomplex(ns)) { fprintf(cp_err, "Error: new scale has complex data\n"); return (NULL); /* for (i = ns->v_length - 1; i >= 0; i--) if (imagpart(&ns->v_compdata[i])) { fprintf(cp_err, "Error: new scale has complex data\n"); return (NULL); } osbuf = alloc_d(olen); */ } if (iscomplex(os)) { fprintf(cp_err, "Error: old scale has complex data\n"); return (NULL); /* for (i = os->v_length - 1; i >= 0; i--) if (imagpart(&os->v_compdata[i])) { fprintf(cp_err, "Error: old scale has complex data\n"); return (NULL); } nsbuf = alloc_d(nlen); */ } if (length != os->v_length) { fprintf(cp_err, "Error: lengths don't match\n"); return (NULL); } if (type != VF_REAL) { fprintf(cp_err, "Error: argument has complex data\n"); return (NULL); } /* Now make sure that either both scales are strictly increasing or * both are strictly decreasing. */ if (os->v_realdata[0] < os->v_realdata[1]) oincreasing = true; else oincreasing = false; for (i = 0; i < os->v_length - 1; i++) if ((os->v_realdata[i] < os->v_realdata[i + 1]) != oincreasing) { fprintf(cp_err, "Error: old scale not monotonic\n"); return (NULL); } if (ns->v_realdata[0] < ns->v_realdata[1]) nincreasing = true; else nincreasing = false; for (i = 0; i < ns->v_length - 1; i++) if ((ns->v_realdata[i] < ns->v_realdata[i + 1]) != nincreasing) { fprintf(cp_err, "Error: new scale not monotonic\n"); return (NULL); } *newtype = VF_REAL; *newlength = ns->v_length; d = alloc_d(ns->v_length); if (!cp_getvar("polydegree", VT_NUM, (char *) °ree)) degree = 1; for (base = 0; base < length; base += grouping) { if (!ft_interpolate((double *) data + base, d + base, os->v_realdata + base, grouping, ns->v_realdata + base, grouping, degree)) { tfree(d); return (NULL); } } return ((char *) d);}char *cx_deriv(data, type, length, newlength, newtype, pl, newpl, grouping) char *data; short type; int length; int *newlength; short *newtype; struct plot *pl, *newpl; int grouping;{ double *scratch; double *spare; double x; int i, j, k; int degree; int n, base; if (grouping == 0) grouping = length; /* First do some sanity checks. */ if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) { fprintf(cp_err, "Internal error: cx_deriv: bad scale\n"); return (NULL); } if (!cp_getvar("dpolydegree", VT_NUM, (char *) °ree)) degree = 2; /* default quadratic */ n = degree + 1; spare = alloc_d(n); scratch = alloc_d(n * (n + 1)); *newlength = length; *newtype = type; if (type == VF_COMPLEX) { complex *c_outdata, *c_indata; double *r_coefs, *i_coefs; double *scale; r_coefs = alloc_d(n); i_coefs = alloc_d(n); c_indata = (complex *) data; c_outdata = alloc_c(length); scale = alloc_d(length); /* XXX */ if (pl->pl_scale->v_type == VF_COMPLEX) /* Not ideal */ for (i = 0; i < length; i++) scale[i] = realpart(&pl->pl_scale->v_compdata[i]); else for (i = 0; i < length; i++) scale[i] = pl->pl_scale->v_realdata[i]; for (base = 0; base < length; base += grouping) { k = 0; for (i = degree; i < grouping; i += 1) { /* real */ for (j = 0; j < n; j++) spare[j] = c_indata[j + i + base].cx_real; if (!ft_polyfit(scale + i + base - degree, spare, r_coefs, degree, scratch)) { fprintf(stderr, "ft_polyfit @ %d failed\n", i); } ft_polyderiv(r_coefs, degree); /* for loop gets the beginning part */ for (j = k; j <= i + degree / 2; j++) { x = scale[j + base]; c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1); } /* imag */ for (j = 0; j < n; j++) spare[j] = c_indata[j + i + base].cx_imag; if (!ft_polyfit(scale + i - degree + base, spare, i_coefs, degree, scratch)) { fprintf(stderr, "ft_polyfit @ %d failed\n", i); } ft_polyderiv(i_coefs, degree); /* for loop gets the beginning part */ for (j = k; j <= i - degree / 2; j++) { x = scale[j + base]; c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1); } k = j; } /* get the tail */ for (j = k; j < length; j++) { x = scale[j + base]; /* real */ c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1); /* imag */ c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1); } } tfree(r_coefs); tfree(i_coefs); tfree(scale); return (char *) c_outdata; } else { /* all-real case */ double *coefs; double *outdata, *indata; double *scale; coefs = alloc_d(n); indata = (double *) data; outdata = alloc_d(length); scale = alloc_d(length); /* XXX */ for (i = 0; i < length; i++) scale[i] = pl->pl_scale->v_realdata[i]; for (base = 0; base < length; base += grouping) { k = 0; for (i = degree; i < grouping; i += 1) { if (!ft_polyfit(scale + i - degree + base, indata + i - degree + base, coefs, degree, scratch)) { fprintf(stderr, "ft_polyfit @ %d failed\n", i + base); } ft_polyderiv(coefs, degree); /* for loop gets the beginning part */ for (j = k; j <= i - degree / 2; j++) { x = pl->pl_scale->v_realdata[j + base]; outdata[j + base] = ft_peval(x, coefs, degree - 1); } k = j; } for (j = k; j < length; j++) { x = pl->pl_scale->v_realdata[j + base]; outdata[j + base] = ft_peval(x, coefs, degree - 1); } } tfree(coefs); tfree(scale); /* XXX */ return (char *) outdata; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -