⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmath4.c

📁 spice中支持多层次元件模型仿真的可单独运行的插件源码
💻 C
字号:
/**********Copyright 1990 Regents of the University of California.  All rights reserved.Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group**********//* * Routines to do complex mathematical functions. These routines require * the -lm libraries. We sacrifice a lot of space to be able * to avoid having to do a seperate call for every vector element, * but it pays off in time savings.  These routines should never * allow FPE's to happen. * * Complex functions are called as follows: *  cx_something(data, type, length, &newlength, &newtype), *  and return a char * that is cast to complex or double. */#include "spice.h"#include "cpdefs.h"#include "ftedefs.h"#include "ftedata.h"#include "ftecmath.h"#include "suffix.h"char *cx_and(data1, data2, datatype1, datatype2, length)    char *data1, *data2;    short datatype1, datatype2;{    double *dd1 = (double *) data1;    double *dd2 = (double *) data2;    double *d;    complex *cc1 = (complex *) data1;    complex *cc2 = (complex *) data2;    complex c1, c2;    int i;    d = alloc_d(length);    if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {        for (i = 0; i < length; i++)            d[i] = dd1[i] && dd2[i];    } else {        for (i = 0; i < length; i++) {            if (datatype1 == VF_REAL) {                realpart(&c1) = dd1[i];                imagpart(&c1) = 0.0;            } else {                realpart(&c1) = realpart(&cc1[i]);                imagpart(&c1) = imagpart(&cc1[i]);            }            if (datatype2 == VF_REAL) {                realpart(&c2) = dd2[i];                imagpart(&c2) = 0.0;            } else {                realpart(&c2) = realpart(&cc2[i]);                imagpart(&c2) = imagpart(&cc2[i]);            }            d[i] = ((realpart(&c1) && realpart(&c2)) &&                (imagpart(&c1) && imagpart(&c2)));        }    }    return ((char *) d);}char *cx_or(data1, data2, datatype1, datatype2, length)    char *data1, *data2;    short datatype1, datatype2;{    double *dd1 = (double *) data1;    double *dd2 = (double *) data2;    double *d;    complex *cc1 = (complex *) data1;    complex *cc2 = (complex *) data2;    complex c1, c2;    int i;    d = alloc_d(length);    if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {        for (i = 0; i < length; i++)            d[i] = dd1[i] || dd2[i];    } else {        for (i = 0; i < length; i++) {            if (datatype1 == VF_REAL) {                realpart(&c1) = dd1[i];                imagpart(&c1) = 0.0;            } else {                realpart(&c1) = realpart(&cc1[i]);                imagpart(&c1) = imagpart(&cc1[i]);            }            if (datatype2 == VF_REAL) {                realpart(&c2) = dd2[i];                imagpart(&c2) = 0.0;            } else {                realpart(&c2) = realpart(&cc2[i]);                imagpart(&c2) = imagpart(&cc2[i]);            }            d[i] = ((realpart(&c1) || realpart(&c2)) &&                (imagpart(&c1) || imagpart(&c2)));        }    }    return ((char *) d);}char *cx_not(data, type, length, newlength, newtype)    char *data;    short type;    int length;    int *newlength;    short *newtype;{    double *d;    double *dd = (double *) data;    complex *cc = (complex *) data;    int i;    d = alloc_d(length);    *newtype = VF_REAL;    *newlength = length;    if (type == VF_COMPLEX) {        for (i = 0; i < length; i++) {            /* gcc doens't like !double */            d[i] = realpart(&cc[i]) ? 0 : 1;            d[i] = imagpart(&cc[i]) ? 0 : 1;        }    } else {        for (i = 0; i < length; i++)            d[i] = ! dd[i];    }    return ((char *) d);}/* This is a strange function. What we do is fit a polynomial to the * curve, of degree $polydegree, and then evaluate it at the points * in the time scale.  What we do is this: for every set of points that * we fit a polynomial to, fill in as much of the new vector as we can * (i.e, between the last value of the old scale we went from to this * one). At the ends we just use what we have...  We have to detect * badness here too... * Note that we pass arguments differently for this one cx_ function... */char *cx_interpolate(data, type, length, newlength, newtype, pl, newpl, grouping)    char *data;    short type;    int length;    int *newlength;    short *newtype;    struct plot *pl, *newpl;    int grouping;{    struct dvec *ns, *os;    double *d;    int degree;    register int i, oincreasing = 1, nincreasing = 1;    int base;    if (grouping == 0)	grouping = length;    /* First do some sanity checks. */    if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {        fprintf(cp_err, "Internal error: cx_interpolate: bad scale\n");        return (NULL);    }    ns = newpl->pl_scale;    os = pl->pl_scale;    if (iscomplex(ns)) {        fprintf(cp_err, "Error: new scale has complex data\n");        return (NULL);        /*        for (i = ns->v_length - 1; i >= 0; i--)            if (imagpart(&ns->v_compdata[i])) {                fprintf(cp_err,                     "Error: new scale has complex data\n");                return (NULL);            }        osbuf = alloc_d(olen);        */    }    if (iscomplex(os)) {        fprintf(cp_err, "Error: old scale has complex data\n");        return (NULL);        /*        for (i = os->v_length - 1; i >= 0; i--)            if (imagpart(&os->v_compdata[i])) {                fprintf(cp_err,                     "Error: old scale has complex data\n");                return (NULL);            }        nsbuf = alloc_d(nlen);        */    }    if (length != os->v_length) {        fprintf(cp_err, "Error: lengths don't match\n");        return (NULL);    }    if (type != VF_REAL) {        fprintf(cp_err, "Error: argument has complex data\n");        return (NULL);    }    /* Now make sure that either both scales are strictly increasing or     * both are strictly decreasing.     */    if (os->v_realdata[0] < os->v_realdata[1])        oincreasing = true;    else        oincreasing = false;    for (i = 0; i < os->v_length - 1; i++)        if ((os->v_realdata[i] < os->v_realdata[i + 1])                != oincreasing) {            fprintf(cp_err, "Error: old scale not monotonic\n");            return (NULL);        }    if (ns->v_realdata[0] < ns->v_realdata[1])        nincreasing = true;    else        nincreasing = false;    for (i = 0; i < ns->v_length - 1; i++)        if ((ns->v_realdata[i] < ns->v_realdata[i + 1])                != nincreasing) {            fprintf(cp_err, "Error: new scale not monotonic\n");            return (NULL);        }    *newtype = VF_REAL;    *newlength = ns->v_length;    d = alloc_d(ns->v_length);    if (!cp_getvar("polydegree", VT_NUM, (char *) &degree))        degree = 1;    for (base = 0; base < length; base += grouping) {	if (!ft_interpolate((double *) data + base, d + base,	    os->v_realdata + base, grouping,            ns->v_realdata + base, grouping, degree))	{	    tfree(d);	    return (NULL);	}    }    return ((char *) d);}char *cx_deriv(data, type, length, newlength, newtype, pl, newpl, grouping)    char *data;    short type;    int length;    int *newlength;    short *newtype;    struct plot *pl, *newpl;    int grouping;{    double *scratch;    double *spare;    double x;    int i, j, k;    int	degree;    int n, base;    if (grouping == 0)	grouping = length;    /* First do some sanity checks. */    if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) {        fprintf(cp_err, "Internal error: cx_deriv: bad scale\n");        return (NULL);    }    if (!cp_getvar("dpolydegree", VT_NUM, (char *) &degree))	degree = 2; /* default quadratic */    n = degree +  1;    spare = alloc_d(n);    scratch = alloc_d(n * (n + 1));    *newlength = length;    *newtype = type;    if (type == VF_COMPLEX) {	complex *c_outdata, *c_indata;	double *r_coefs, *i_coefs;	double *scale;	r_coefs = alloc_d(n);	i_coefs = alloc_d(n);	c_indata = (complex *) data;	c_outdata = alloc_c(length);	scale = alloc_d(length);	/* XXX */	if (pl->pl_scale->v_type == VF_COMPLEX)	    /* Not ideal */	    for (i = 0; i < length; i++)		scale[i] = realpart(&pl->pl_scale->v_compdata[i]);	else	    for (i = 0; i < length; i++)		scale[i] = pl->pl_scale->v_realdata[i];	for (base = 0; base < length; base += grouping) {	    k = 0;	    for (i = degree; i < grouping; i += 1) {		/* real */		for (j = 0; j < n; j++)		    spare[j] = c_indata[j + i + base].cx_real;		if (!ft_polyfit(scale + i + base - degree,		    spare, r_coefs, degree, scratch))		{		    fprintf(stderr, "ft_polyfit @ %d failed\n", i);		}		ft_polyderiv(r_coefs, degree);		/* for loop gets the beginning part */		for (j = k; j <= i + degree / 2; j++) {		    x = scale[j + base];		    c_outdata[j + base].cx_real =			ft_peval(x, r_coefs, degree - 1);		}		/* imag */		for (j = 0; j < n; j++)		    spare[j] = c_indata[j + i + base].cx_imag;		if (!ft_polyfit(scale + i - degree + base,		    spare, i_coefs, degree, scratch))		{		    fprintf(stderr, "ft_polyfit @ %d failed\n", i);		}		ft_polyderiv(i_coefs, degree);		/* for loop gets the beginning part */		for (j = k; j <= i - degree / 2; j++) {		    x = scale[j + base];		    c_outdata[j + base].cx_imag =			ft_peval(x, i_coefs, degree - 1);		}		k = j;	    }	    /* get the tail */	    for (j = k; j < length; j++) {		x = scale[j + base];		/* real */		c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1);		/* imag */		c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1);	    }	}	tfree(r_coefs);	tfree(i_coefs);	tfree(scale);	return (char *) c_outdata;    } else {	/* all-real case */	double *coefs;	double *outdata, *indata;	double *scale;	coefs = alloc_d(n);	indata = (double *) data;	outdata = alloc_d(length);	scale = alloc_d(length);	/* XXX */	for (i = 0; i < length; i++)	    scale[i] = pl->pl_scale->v_realdata[i];	for (base = 0; base < length; base += grouping) {	    k = 0;	    for (i = degree; i < grouping; i += 1) {		if (!ft_polyfit(scale + i - degree + base,		    indata + i - degree + base, coefs, degree, scratch))		{		    fprintf(stderr, "ft_polyfit @ %d failed\n", i + base);		}		ft_polyderiv(coefs, degree);		/* for loop gets the beginning part */		for (j = k; j <= i - degree / 2; j++) {		    x = pl->pl_scale->v_realdata[j + base];		    outdata[j + base] = ft_peval(x, coefs, degree - 1);		}		k = j;	    }	    for (j = k; j < length; j++) {		    x = pl->pl_scale->v_realdata[j + base];		    outdata[j + base] = ft_peval(x, coefs, degree - 1);	    }        }	tfree(coefs);	tfree(scale);	/* XXX */	return (char *) outdata;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -