📄 ltra_3.cir
字号:
BJTdriver -- 2in st. lin -- 20in coupled line -- 2in st line -- DiodeCircuit* This unclassified circuit is from Raytheon, courtesy Gerry Marino.* * _______* -------- 2in _________________ 2in | |* | BJT |______| |______|Diode|* | |------| |------| |* | Drvr | line | 2-wire | line |rcvr.|* -------- | coupled | |_____|* | transmission |* |-/\/\/\/\----| line |-------\/\/\/\/\----|* | 50ohms | | 50ohms |* | | | |* Ground ----------------- Ground* ** Each inch of the lossy line is modelled by 10 LRC lumps in the * Raytheon model.* The line parameters (derived from the Raytheon input file) are:* L = 9.13nH per inch* C = 3.65pF per inch* R = 0.2 ohms per inch* K = 0.482 [coupling coefficient; K = M/sqrt(L1*L2)]* Cc = 1.8pF per inch** coupled ltra model generated using the standalone program* multi_decomp* the circuit*tran 0.1ns 60nsv1 1 0 0v pulse(0 4 1ns 1ns 1ns 20ns 40ns)*v1 1 0 4v pulse(4 0 1ns 1ns 1ns 20ns 40ns)vcc 10 0 5v* series termination*x1 1 oof 10 bjtdrvr*rseries oof 2 50x1 1 2 10 bjtdrvrrt1 3 0 50* convolution modelx2 2 3 4 5 conv2wetcmodel* rlc segments model*x2 2 3 4 5 rlc2wetcmodelx3 4 dioloadrt2 5 0 50*.model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12*+pe=0.5 pc=0.5).model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12+pe=0.5 pc=0.5).model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12+pe=0.5 pc=0.5)*.model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.15pF is=1e-12.model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12+pe=0.5 pc=0.5).model dmod1 d(n=2.25 is=1.6399e-4 bv=10)*.model dmod1 d.model dmod2 d.model dmod d(vj=0.3v)*.model diod1 d(1.0 tt=0.75ns vj=0.6 rs=909 bv=10).model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10)*.model diod2 d(1.0 tt=0.5ns vj=0.3 rs=100 bv=10).model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10).options itl5=0 acct reltol=1e-3 abstol=1e-12.tran 0.1ns 60ns*.tran 1e-9 1e-8* bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from * the Raytheon file.subckt bjtdrvr 19 268 20q1 22 18 13 qmodnq2 18 16 13 qmodnqd2 21 9 0 qmodnq4 14 14 0 qmodnq3 16 15 14 qmodpdq5 8 13 17 qmodnq6 25 12 0 qmodnq7 6 17 0 qmodpdqd1 26 10 0 qmodnq8 7 11 10 qmodn*q10 268 17 0 qmodpdq10 268 17 0 qmodpdmineq9 7 10 268 qmodnd1 0 19 dmod1d2 18 19 dmod2d3 13 19 dmoddq1 18 22 dmoddq2 16 18 dmodd502 9 21 dmoddq3 15 16 dmodd10 24 8 dmodd4 15 6 dmoddq6 12 25 dmoddq7 17 6 dmoddd1 17 10 dmodd7 11 6 dmoddd2 17 26 dmodd9 23 6 dmoddq8 11 7 dmodd501 17 268 dmoddq9 10 7 dmodd14 20 27 dmodd8 0 268 dmodr1 18 20 6kr2 22 20 2.2kr4 0 13 7krd1 9 13 2krd2 21 13 3kr3 16 20 10kr5 15 20 15kr9 0 17 4kr6 24 20 750r10 12 17 2kr12 24 11 1.5kr11 25 17 3kr15 23 20 10kr13 0 10 15kr14 7 27 12.ends bjtdrvr* subckt dioload - diode load: input=28, output=4, vcc=5.subckt dioload 28*comment out everything in dioload except d5 and r503, and watch* the difference in results obtained between a tran 0.1ns 20ns and* a tran 0.01ns 20nsvccint 5 0 5vc1 28 0 5pFr503 0 4 5.55r4 0 28 120kr5 1 5 7.5kd5 4 28 diod2d1 1 28 diod1d4 2 0 diod1d3 3 2 diod1d2 1 3 diod1.ends dioload* subckt rlclump - one RLC lump of the lossy line.subckt rlclump 1 2*r1 1 3 0.02*c1 3 0 0.365pF*l1 3 2 0.913nHl1 1 3 0.913nHc1 2 0 0.365pFr1 3 2 0.02*r1 1 3 0.01*c1 3 0 0.1825pF*l1 3 4 0.4565nH*r2 4 5 0.01*c2 5 0 0.1825pF*l2 5 2 0.4565nH*c1 1 0 0.365pF*l1 1 2 0.913nH.ends lump.subckt rlconeinch 1 2x1 1 3 rlclumpx2 3 4 rlclumpx3 4 5 rlclumpx4 5 6 rlclumpx5 6 7 rlclumpx6 7 8 rlclumpx7 8 9 rlclumpx8 9 10 rlclumpx9 10 11 rlclumpx10 11 2 rlclump.ends rlconeinch.subckt rlctwoinch 1 2x1 1 3 rlconeinchx2 3 2 rlconeinch.ends rlctwoinch.subckt rlcfourinch 1 2x1 1 3 rlconeinchx2 3 4 rlconeinchx3 4 5 rlconeinchx4 5 2 rlconeinch.ends rlcfourinch.subckt rlcfiveinch 1 2x1 1 3 rlconeinchx2 3 4 rlconeinchx3 4 5 rlconeinchx4 5 6 rlconeinchx5 6 2 rlconeinch.ends rlcfiveinch.subckt rlctwentyrlcfourinch 1 2x1 1 3 rlcfiveinchx2 3 4 rlcfiveinchx3 4 5 rlcfiveinchx4 5 6 rlcfiveinchx5 6 2 rlcfourinch.ends rlctwentyrlcfourinch.subckt rlclumpstub A B C Dx1 A int1 rlcfiveinchx2 int1 int2 rlcfiveinchx3 int2 1 rlcfiveinchx4 1 2 rlcfourinchx5 1 int3 rlcfiveinchx6 int3 B rlconeinchx7 2 C rlcfiveinchx8 2 D rlcfourinch.ends rlclumpstub.subckt ltrastub A B C Do1 A 0 1 0 lline15ino2 1 0 B 0 lline6ino3 1 0 2 0 lline4ino4 2 0 C 0 lline5ino5 2 0 D 0 lline4in.ends ltrastub*modelling using R and lossless lines*5 segments per inch.model llfifth ltra nocontrol rel=10 r=0 g=0 l=9.13e-9+c=3.65e-12 len=0.2 steplimit quadinterp.subckt xlump 1 2 o1 1 0 3 0 llfifthr1 2 3 0.04.ends xlump.subckt xoneinch 1 2x1 1 3 xlumpx2 3 4 xlumpx3 4 5 xlumpx4 5 6 xlumpx5 6 2 xlump*x5 6 7 xlump*x6 7 8 xlump*x7 8 9 xlump*x8 9 10 xlump*x9 10 11 xlump*x10 11 2 xlump.ends xoneinch.subckt xFourinch 1 2x1 1 3 xoneinchx2 3 4 xoneinchx3 4 5 xoneinchx4 5 2 xoneinch.ends xfourinch.subckt xfiveinch 1 2x1 1 3 xoneinchx2 3 4 xoneinchx3 4 5 xoneinchx4 5 6 xoneinchx5 6 2 xoneinch.ends xfiveinch.subckt xlumpstub A B C Dx1 A int1 xfiveinchx2 int1 int2 xfiveinchx3 int2 1 xfiveinchx4 1 2 xfourinchx5 1 int3 xfiveinchx6 int3 B xoneinchx7 2 C xfiveinchx8 2 D xfourinch.ends xlumpstub* modelling a 2 wire coupled system using RLC lumps* 10 segments per inch** 1---xxxxx----2* 3---xxxxx----4.subckt rlc2wlump 1 3 2 4l1 1 5 0.913nHc1 2 0 0.365pFr1 5 2 0.02l2 3 6 0.913nHc2 4 0 0.365pFr2 6 4 0.02cmut 2 4 0.18pFk12 l1 l2 0.482.ends rlc2wlump.subckt rlc2woneinch 1 2 3 4x1 1 2 5 6 rlc2wlumpx2 5 6 7 8 rlc2wlumpx3 7 8 9 10 rlc2wlumpx4 9 10 11 12 rlc2wlumpx5 11 12 13 14 rlc2wlumpx6 13 14 15 16 rlc2wlumpx7 15 16 17 18 rlc2wlumpx8 17 18 19 20 rlc2wlumpx9 19 20 21 22 rlc2wlumpx10 21 22 3 4 rlc2wlump.ends rlc2woneinch.subckt rlc2wfiveinch 1 2 3 4x1 1 2 5 6 rlc2woneinchx2 5 6 7 8 rlc2woneinchx3 7 8 9 10 rlc2woneinchx4 9 10 11 12 rlc2woneinchx5 11 12 3 4 rlc2woneinch.ends rlc2wfiveinch.subckt rlc2wtwentyinch 1 2 3 4x1 1 2 5 6 rlc2wfiveinchx2 5 6 7 8 rlc2wfiveinchx3 7 8 9 10 rlc2wfiveinchx4 9 10 3 4 rlc2wfiveinch.ends rlc2wtwentyinch.subckt rlc2wetcmodel 1 2 3 4x1 1 5 rlctwoinchx2 5 2 6 4 rlc2wtwentyinchx3 6 3 rlctwoinch.ends rlc2wetcmodel* Subcircuit conv2wtwentyinch* conv2wtwentyinch is a subcircuit that models a 2-conductor transmission line with* the following parameters: l=9.13e-09, c=3.65e-12, r=0.2, g=0,* inductive_coeff_of_coupling k=0.482, inter-line capacitance cm=1.8e-12,* length=20. Derived parameters are: lm=4.40066e-09, ctot=5.45e-12.* * It is important to note that the model is a simplified one - the* following assumptions are made: 1. The self-inductance l, the* self-capacitance ctot (note: not c), the series resistance r and the* parallel capacitance g are the same for all lines, and 2. Each line* is coupled only to the two lines adjacent to it, with the same* coupling parameters cm and lm. The first assumption imply that edge* effects have to be neglected. The utility of these assumptions is* that they make the sL+R and sC+G matrices symmetric, tridiagonal and* Toeplitz, with useful consequences.* * It may be noted that a symmetric two-conductor line will be* accurately represented by this model.* Lossy line models.model mod1_conv2wtwentyinch ltra rel=1.2 nocontrol r=0.2 l=4.72933999088e-09 g=0 c=7.25000000373e-12 len=20.model mod2_conv2wtwentyinch ltra rel=1.2 nocontrol r=0.2 l=1.35306599818e-08 g=0 c=3.65000000746e-12 len=20* subcircuit m_conv2wtwentyinch - modal transformation network for conv2wtwentyinch.subckt m_conv2wtwentyinch 1 2 3 4v1 5 0 0vv2 6 0 0vf1 0 3 v1 0.707106779721f2 0 3 v2 -0.707106782652f3 0 4 v1 0.707106781919f4 0 4 v2 0.707106780454e1 7 5 3 0 0.707106780454e2 1 7 4 0 0.707106782652e3 8 6 3 0 -0.707106781919e4 2 8 4 0 0.707106779721.ends m_conv2wtwentyinch* Subckt conv2wtwentyinch.subckt conv2wtwentyinch 1 2 3 4x1 1 2 5 6 m_conv2wtwentyincho1 5 0 7 0 mod1_conv2wtwentyincho2 6 0 8 0 mod2_conv2wtwentyinchx2 3 4 7 8 m_conv2wtwentyinch.ends conv2wtwentyinch.model convtwoinch ltra r=0.2 l=9.13e-9 c=3.65e-12 len=2.0 rel=1.2 nocontrol.subckt conv2wetcmodel 1 2 3 4o1 1 0 5 0 convtwoinchx1 5 2 6 4 conv2wtwentyincho2 6 0 3 0 convtwoinch.ends conv2wetcmodel
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -