📄 spdefs.h
字号:
/* Begin `FillinListNodeStruct'. */struct FillinListNodeStruct{ ElementPtr pFillinList; int NumberOfFillinsInList; struct FillinListNodeStruct *Next;};/* Similar to above, but keeps track of the original Elements *//* Begin `ElementListNodeStruct'. */struct ElementListNodeStruct{ ElementPtr pElementList; int NumberOfElementsInList; struct ElementListNodeStruct *Next;};/* * MATRIX FRAME DATA STRUCTURE * * This structure contains all the pointers that support the orthogonal * linked list that contains the matrix elements. Also included in this * structure are other numbers and pointers that are used globally by the * sparse matrix routines and are associated with one particular matrix. * * >>> Type definitions: * MatrixPtr * A pointer to MatrixFrame. Essentially, a pointer to the matrix. * * >>> Structure fields: * AbsThreshold (RealNumber) * The absolute magnitude an element must have to be considered as a * pivot candidate, except as a last resort. * AllocatedExtSize (int) * The allocated size of the arrays used to translate external row and * column numbers to their internal values. * AllocatedSize (int) * The currently allocated size of the matrix; the size the matrix can * grow to when EXPANDABLE is set true and AllocatedSize is the largest * the matrix can get without requiring that the matrix frame be * reallocated. * Complex (BOOLEAN) * The flag which indicates whether the matrix is complex (true) or * real. * CurrentSize (int) * This number is used during the building of the matrix when the * TRANSLATE option is set true. It indicates the number of internal * rows and columns that have elements in them. * Diag (ArrayOfElementPtrs) * Array of pointers that points to the diagonal elements. * DoCmplxDirect (BOOLEAN *) * Array of flags, one for each column in matrix. If a flag is true * then corresponding column in a complex matrix should be eliminated * in spFactor() using direct addressing (rather than indirect * addressing). * DoRealDirect (BOOLEAN *) * Array of flags, one for each column in matrix. If a flag is true * then corresponding column in a real matrix should be eliminated * in spFactor() using direct addressing (rather than indirect * addressing). * Elements (int) * The total number of elements present in matrix. * Error (int) * The error status of the sparse matrix package. * ExtSize (int) * The value of the largest external row or column number encountered. * ExtToIntColMap (int []) * An array that is used to convert external columns number to internal * external column numbers. Present only if TRANSLATE option is set true. * ExtToIntRowMap (int []) * An array that is used to convert external row numbers to internal * external row numbers. Present only if TRANSLATE option is set true. * Factored (BOOLEAN) * Indicates if matrix has been factored. This flag is set true in * spFactor() and spOrderAndFactor() and set false in spCreate() * and spClear(). * Fillins (int) * The number of fill-ins created during the factorization the matrix. * FirstInCol (ArrayOfElementPtrs) * Array of pointers that point to the first nonzero element of the * column corresponding to the index. * FirstInRow (ArrayOfElementPtrs) * Array of pointers that point to the first nonzero element of the row * corresponding to the index. * ID (unsigned long int) * A constant that provides the sparse data structure with a signature. * When DEBUG is true, all externally available sparse routines check * this signature to assure they are operating on a valid matrix. * Intermediate (RealVector) * Temporary storage used in the spSolve routines. Intermediate is an * array used during forward and backward substitution. It is * commonly called y when the forward and backward substitution process is * denoted Ax = b => Ly = b and Ux = y. * InternalVectorsAllocated (BOOLEAN) * A flag that indicates whether the Markowitz vectors and the * Intermediate vector have been created. * These vectors are created in spcCreateInternalVectors(). * IntToExtColMap (int []) * An array that is used to convert internal column numbers to external * external column numbers. * IntToExtRowMap (int []) * An array that is used to convert internal row numbers to external * external row numbers. * MarkowitzCol (int []) * An array that contains the count of the non-zero elements excluding * the pivots for each column. Used to generate and update MarkowitzProd. * MarkowitzProd (long []) * The array of the products of the Markowitz row and column counts. The * element with the smallest product is the best pivot to use to maintain * sparsity. * MarkowitzRow (int []) * An array that contains the count of the non-zero elements excluding * the pivots for each row. Used to generate and update MarkowitzProd. * MaxRowCountInLowerTri (int) * The maximum number of off-diagonal element in the rows of L, the * lower triangular matrix. This quantity is used when computing an * estimate of the roundoff error in the matrix. * NeedsOrdering (BOOLEAN) * This is a flag that signifies that the matrix needs to be ordered * or reordered. NeedsOrdering is set true in spCreate() and * spGetElement() or spGetAdmittance() if new elements are added to the * matrix after it has been previously factored. It is set false in * spOrderAndFactor(). * NumberOfInterchangesIsOdd (BOOLEAN) * Flag that indicates the sum of row and column interchange counts * is an odd number. Used when determining the sign of the determinant. * Originals (int) * The number of original elements (total elements minus fill ins) * present in matrix. * Partitioned (BOOLEAN) * This flag indicates that the columns of the matrix have been * partitioned into two groups. Those that will be addressed directly * and those that will be addressed indirectly in spFactor(). * PivotsOriginalCol (int) * Column pivot was chosen from. * PivotsOriginalRow (int) * Row pivot was chosen from. * PivotSelectionMethod (char) * Character that indicates which pivot search method was successful. * PreviousMatrixWasComplex (BOOLEAN) * This flag in needed to determine how to clear the matrix. When * dealing with real matrices, it is important that the imaginary terms * in the matrix elements be zero. Thus, if the previous matrix was * complex, then the current matrix will be cleared as if it were complex * even if it is real. * RelThreshold (RealNumber) * The magnitude an element must have relative to others in its row * to be considered as a pivot candidate, except as a last resort. * Reordered (BOOLEAN) * This flag signifies that the matrix has been reordered. It * is cleared in spCreate(), set in spMNA_Preorder() and * spOrderAndFactor() and is used in spPrint(). * RowsLinked (BOOLEAN) * A flag that indicates whether the row pointers exist. The AddByIndex * routines do not generate the row pointers, which are needed by some * of the other routines, such as spOrderAndFactor() and spScale(). * The row pointers are generated in the function spcLinkRows(). * SingularCol (int) * Normally zero, but if matrix is found to be singular, SingularCol is * assigned the external column number of pivot that was zero. * SingularRow (int) * Normally zero, but if matrix is found to be singular, SingularRow is * assigned the external row number of pivot that was zero. * Singletons (int) * The number of singletons available for pivoting. Note that if row I * and column I both contain singletons, only one of them is counted. * Size (int) * Number of rows and columns in the matrix. Does not change as matrix * is factored. * TrashCan (MatrixElement) * This is a dummy MatrixElement that is used to by the user to stuff * data related to the zero row or column. In other words, when the user * adds an element in row zero or column zero, then the matrix returns * a pointer to TrashCan. In this way the user can have a uniform way * data into the matrix independent of whether a component is connected * to ground. * * >>> The remaining fields are related to memory allocation. * TopOfAllocationList (AllocationListPtr) * Pointer which points to the top entry in a list. The list contains * all the pointers to the segments of memory that have been allocated * to this matrix. This is used when the memory is to be freed on * deallocation of the matrix. * RecordsRemaining (int) * Number of slots left in the list of allocations. * NextAvailElement (ElementPtr) * Pointer to the next available element which has been allocated but as * yet is unused. Matrix elements are allocated in groups of * ELEMENTS_PER_ALLOCATION in order to speed element allocation and * freeing. * ElementsRemaining (int) * Number of unused elements left in last block of elements allocated. * NextAvailFillin (ElementPtr) * Pointer to the next available fill-in which has been allocated but * as yet is unused. Fill-ins are allocated in a group in order to keep * them physically close in memory to the rest of the matrix. * FillinsRemaining (int) * Number of unused fill-ins left in the last block of fill-ins * allocated. * FirstFillinListNode (FillinListNodeStruct *) * A pointer to the head of the linked-list that keeps track of the * lists of fill-ins. * LastFillinListNode (FillinListNodeStruct *) * A pointer to the tail of the linked-list that keeps track of the * lists of fill-ins. *//* Begin `MatrixFrame'. */struct MatrixFrame{ RealNumber AbsThreshold; int AllocatedSize; int AllocatedExtSize; BOOLEAN Complex; int CurrentSize; ArrayOfElementPtrs Diag; BOOLEAN *DoCmplxDirect; BOOLEAN *DoRealDirect; int Elements; int Error; int ExtSize; int *ExtToIntColMap; int *ExtToIntRowMap; BOOLEAN Factored; int Fillins; ArrayOfElementPtrs FirstInCol; ArrayOfElementPtrs FirstInRow; unsigned long ID; RealVector Intermediate; BOOLEAN InternalVectorsAllocated; int *IntToExtColMap; int *IntToExtRowMap; int *MarkowitzRow; int *MarkowitzCol; long *MarkowitzProd; int MaxRowCountInLowerTri; BOOLEAN NeedsOrdering; BOOLEAN NumberOfInterchangesIsOdd; int Originals; BOOLEAN Partitioned; int PivotsOriginalCol; int PivotsOriginalRow; char PivotSelectionMethod; BOOLEAN PreviousMatrixWasComplex; RealNumber RelThreshold; BOOLEAN Reordered; BOOLEAN RowsLinked; int SingularCol; int SingularRow; int Singletons; int Size; struct MatrixElement TrashCan; AllocationListPtr TopOfAllocationList; int RecordsRemaining; ElementPtr NextAvailElement; int ElementsRemaining; struct ElementListNodeStruct *FirstElementListNode; struct ElementListNodeStruct *LastElementListNode; ElementPtr NextAvailFillin; int FillinsRemaining; struct FillinListNodeStruct *FirstFillinListNode; struct FillinListNodeStruct *LastFillinListNode;};typedef struct MatrixFrame *MatrixPtr;/* * Function declarations */#ifdef __STDC__extern ElementPtr spcGetElement( MatrixPtr );extern ElementPtr spcGetFillin( MatrixPtr );extern ElementPtr spcFindElementInCol( MatrixPtr, ElementPtr*, int, int, int );extern ElementPtr spcCreateElement( MatrixPtr, int, int, ElementPtr*, int );extern void spcCreateInternalVectors( MatrixPtr );extern void spcLinkRows( MatrixPtr );extern void spcColExchange( MatrixPtr, int, int );extern void spcRowExchange( MatrixPtr, int, int );#else /* __STDC__ */extern ElementPtr spcGetElement();extern ElementPtr spcGetFillin();extern ElementPtr spcFindElementInCol();extern ElementPtr spcCreateElement();extern void spcCreateInternalVectors();extern void spcLinkRows();extern void spcColExchange();extern void spcRowExchange();#endif /* __STDC__ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -