📄 twopcont.c
字号:
pLEdge = pElem->pLeftEdge; pREdge = pElem->pRightEdge; /* load for all i,j */ for ( index = 0; index <= 3; index++ ) { pNode = pElem->pNodes[ index ]; if ( pNode->nodeType ISNOT CONTACT ) { *(pNode->fPsiPsi) += dyOverDx + dxOverDy; if ( pElem->elemType IS SEMICON ) { if ( index <= 1 ) { pHEdge = pTEdge; } else { pHEdge = pBEdge; } if ( index IS 0 OR index IS 3 ) { pVEdge = pLEdge; } else { pVEdge = pREdge; } nConc = *(pDevice->devState0 + pNode->nodeN); *(pNode->fPsiPsi) += dxdy * nConc; *(pNode->fPsiP) -= dxdy; *(pNode->fPPsi) -= dy * pHEdge->dJpDpsiP1 + dx * pVEdge->dJpDpsiP1; /* Handle generation terms */ *(pNode->fPP) += dxdy * pNode->dUdP; *(pNode->fPPsi) += dxdy * pNode->dUdN * nConc; } } } /* Handle neighbor and edge dependent terms */ pNode = pElem->pTLNode; if ( pNode->nodeType ISNOT CONTACT ) { *(pNode->fPsiPsiiP1) -= dyOverDx; *(pNode->fPsiPsijP1) -= dxOverDy; if ( pElem->elemType IS SEMICON ) { *(pNode->fPP) += dy * pTEdge->dJpDp + dx * pLEdge->dJpDp; *(pNode->fPPsiiP1) += dy * pTEdge->dJpDpsiP1; *(pNode->fPPiP1) += dy * pTEdge->dJpDpP1; *(pNode->fPPsijP1) += dx * pLEdge->dJpDpsiP1; *(pNode->fPPjP1) += dx * pLEdge->dJpDpP1; } } pNode = pElem->pTRNode; if ( pNode->nodeType ISNOT CONTACT ) { *(pNode->fPsiPsiiM1) -= dyOverDx; *(pNode->fPsiPsijP1) -= dxOverDy; if ( pElem->elemType IS SEMICON ) { *(pNode->fPP) += -dy * pTEdge->dJpDpP1 + dx * pREdge->dJpDp; *(pNode->fPPsiiM1) += dy * pTEdge->dJpDpsiP1; *(pNode->fPPiM1) -= dy * pTEdge->dJpDp; *(pNode->fPPsijP1) += dx * pREdge->dJpDpsiP1; *(pNode->fPPjP1) += dx * pREdge->dJpDpP1; } } pNode = pElem->pBRNode; if ( pNode->nodeType ISNOT CONTACT ) { *(pNode->fPsiPsiiM1) -= dyOverDx; *(pNode->fPsiPsijM1) -= dxOverDy; if ( pElem->elemType IS SEMICON ) { *(pNode->fPP) += -dy * pBEdge->dJpDpP1 - dx * pREdge->dJpDpP1; *(pNode->fPPsiiM1) += dy * pBEdge->dJpDpsiP1; *(pNode->fPPiM1) -= dy * pBEdge->dJpDp; *(pNode->fPPsijM1) += dx * pREdge->dJpDpsiP1; *(pNode->fPPjM1) -= dx * pREdge->dJpDp; } } pNode = pElem->pBLNode; if ( pNode->nodeType ISNOT CONTACT ) { *(pNode->fPsiPsiiP1) -= dyOverDx; *(pNode->fPsiPsijM1) -= dxOverDy; if ( pElem->elemType IS SEMICON ) { *(pNode->fPP) += dy * pBEdge->dJpDp - dx * pLEdge->dJpDpP1; *(pNode->fPPsiiP1) += dy * pBEdge->dJpDpsiP1; *(pNode->fPPiP1) += dy * pBEdge->dJpDpP1; *(pNode->fPPsijM1) += dx * pLEdge->dJpDpsiP1; *(pNode->fPPjM1) -= dx * pLEdge->dJpDp; } } } /* Calculate the Inversion-Layer Mobility Dependent Terms in Jac. */ if ( MobDeriv AND SurfaceMobility ) { for ( pCh = pDevice->pChannel; pCh ISNOT NIL(TWOchannel); pCh = pCh->next ) { /* Find effective height of oxide element at interface. */ if ( pCh->type%2 == 0 ) { /* Vertical slice */ ds = pCh->pNElem->dy / pCh->pNElem->epsRel; } else { /* Horizontal slice */ ds = pCh->pNElem->dx / pCh->pNElem->epsRel; } pElem = pCh->pSeed; nextIndex = (pCh->type + 2)%4; while (pElem && pElem->channel == pCh->id) { TWOPmobDeriv( pElem, pCh->type, ds ); pElem = pElem->pElems[ nextIndex ]; } } /* endfor pCh ISNOT NIL */ } /* endif MobDeriv and SurfaceMobility */}/* load only the Rhs vector */void TWOPrhsLoad( pDevice, tranAnalysis, info ) TWOdevice *pDevice;BOOLEAN tranAnalysis;TWOtranInfo *info;{ TWOelem *pElem; TWOnode *pNode; TWOedge *pHEdge, *pVEdge; TWOedge *pTEdge, *pBEdge, *pLEdge, *pREdge; TWOchannel *pCh; int index, eIndex; double *pRhs = pDevice->rhs; double dx, dy, dxdy, dyOverDx, dxOverDy; double dPsiT, dPsiB, dPsiL, dPsiR; double rhsP; double nConc, pConc; double perTime; void TWOPcommonTerms(); /* first compute the currents */ TWOPcommonTerms( pDevice, TRUE, tranAnalysis, info ); /* find reciprocal timestep */ if ( tranAnalysis ) { perTime = info->intCoeff[0]; } /* zero the rhs vector */ for ( index = 1 ; index <= pDevice->numEqns ; index++ ) { pRhs[ index ] = 0.0; } for ( eIndex = 1; eIndex <= pDevice->numElems; eIndex++ ) { pElem = pDevice->elements[ eIndex ]; dx = 0.5 * pElem->dx; dy = 0.5 * pElem->dy; dxdy = dx * dy; dxOverDy = 0.5 * pElem->epsRel * pElem->dxOverDy; dyOverDx = 0.5 * pElem->epsRel * pElem->dyOverDx; pTEdge = pElem->pTopEdge; pBEdge = pElem->pBotEdge; pLEdge = pElem->pLeftEdge; pREdge = pElem->pRightEdge; dPsiT = pTEdge->dPsi; dPsiB = pBEdge->dPsi; dPsiL = pLEdge->dPsi; dPsiR = pREdge->dPsi; /* load for all i,j */ for ( index = 0; index <= 3; index++ ) { pNode = pElem->pNodes[ index ]; if ( pNode->nodeType ISNOT CONTACT ) { if ( index <= 1 ) { pHEdge = pTEdge; } else { pHEdge = pBEdge; } if ( index IS 0 OR index IS 3 ) { pVEdge = pLEdge; } else { pVEdge = pREdge; } /* Add surface state charges. */ pRhs[ pNode->psiEqn ] += dx * pHEdge->qf; pRhs[ pNode->psiEqn ] += dy * pVEdge->qf; if ( pElem->elemType IS SEMICON ) { nConc = *(pDevice->devState0 + pNode->nodeN); pConc = *(pDevice->devState0 + pNode->nodeP); pRhs[ pNode->psiEqn ] += dxdy * (pNode->netConc + pConc - nConc); /* Handle generation terms */ rhsP = dxdy * pNode->uNet; pRhs[ pNode->pEqn ] -= rhsP; /* Handle dXdT continuity terms */ if ( tranAnalysis ) { pRhs[ pNode->pEqn ] -= dxdy * pNode->dPdT; } } } } /* Handle neighbor and edge dependent terms */ pNode = pElem->pTLNode; if ( pNode->nodeType ISNOT CONTACT ) { pRhs[ pNode->psiEqn ] -= -dyOverDx * dPsiT - dxOverDy * dPsiL; if ( pElem->elemType IS SEMICON ) { pRhs[ pNode->pEqn ] -= dy * pTEdge->jp + dx * pLEdge->jp; } } pNode = pElem->pTRNode; if ( pNode->nodeType ISNOT CONTACT ) { pRhs[ pNode->psiEqn ] -= dyOverDx * dPsiT - dxOverDy * dPsiR; if ( pElem->elemType IS SEMICON ) { pRhs[ pNode->pEqn ] -= -dy * pTEdge->jp + dx * pREdge->jp; } } pNode = pElem->pBRNode; if ( pNode->nodeType ISNOT CONTACT ) { pRhs[ pNode->psiEqn ] -= dyOverDx * dPsiB + dxOverDy * dPsiR; if ( pElem->elemType IS SEMICON ) { pRhs[ pNode->pEqn ] -= -dy * pBEdge->jp - dx * pREdge->jp; } } pNode = pElem->pBLNode; if ( pNode->nodeType ISNOT CONTACT ) { pRhs[ pNode->psiEqn ] -= -dyOverDx * dPsiB + dxOverDy * dPsiL; if ( pElem->elemType IS SEMICON ) { pRhs[ pNode->pEqn ] -= dy * pBEdge->jp - dx * pLEdge->jp; } } }}/* * computation of current densities, recombination rates, * mobilities and their derivatives */void TWOPcommonTerms( pDevice, currentOnly, tranAnalysis, info )TWOdevice *pDevice;BOOLEAN currentOnly, tranAnalysis;TWOtranInfo *info;{ TWOelem *pElem, *pElem1; TWOedge *pEdge; TWOnode *pNode; int index, eIndex; int nextIndex; /* index of node to find next element */ double psi1, psi2, refPsi, pC, pP1; double dPsiP; double bPsiP, dbPsiP, bMPsiP, dbMPsiP; double muP, dMuP, rDx, rDy; double psi, nConc, pConc; double cnAug, cpAug; double eSurf; /* For channel mobilities */ double qInt; TWOchannel *pCh; /* evaluate all node (including recombination) and edge quantities */ for ( eIndex = 1; eIndex <= pDevice->numElems; eIndex++ ) { pElem = pDevice->elements[ eIndex ]; refPsi = pElem->matlInfo->refPsi; cnAug = pElem->matlInfo->cAug[ELEC]; cpAug = pElem->matlInfo->cAug[HOLE]; for ( index = 0; index <= 3; index++ ) { if ( pElem->evalNodes[ index ] ) { pNode = pElem->pNodes[ index ]; if ( pNode->nodeType ISNOT CONTACT ) { psi = pDevice->dcSolution[ pNode->psiEqn ]; if ( pElem->elemType IS SEMICON ) { nConc = pNode->nie * exp( psi - refPsi ); pConc = pDevice->dcSolution[ pNode->pEqn ]; if ( Srh ) { recomb(nConc, pConc, pNode->tn, pNode->tp, cnAug, cpAug, pNode->nie, &pNode->uNet, &pNode->dUdN, &pNode->dUdP); } else { pNode->uNet = 0.0; pNode->dUdN = 0.0; pNode->dUdP = 0.0; } } } else { /* a contact node */ psi = pNode->psi; if ( pElem->elemType IS SEMICON ) { nConc = pNode->nConc; pConc = pNode->pConc; } } /* store info in the state tables */ *(pDevice->devState0 + pNode->nodePsi) = psi; if ( pElem->elemType IS SEMICON ) { *(pDevice->devState0 + pNode->nodeN) = nConc; *(pDevice->devState0 + pNode->nodeP) = pConc; if ( tranAnalysis AND pNode->nodeType ISNOT CONTACT ) { pNode->dNdT = integrate( pDevice->devStates, info, pNode->nodeN ); pNode->dPdT = integrate( pDevice->devStates, info, pNode->nodeP ); } } } } for ( index = 0; index <= 3; index++ ) { if ( pElem->evalEdges[ index ] ) { pEdge = pElem->pEdges[ index ]; pNode = pElem->pNodes[ index ]; if ( pNode->nodeType ISNOT CONTACT ) { psi1 = pDevice->dcSolution[pNode->psiEqn]; } else { psi1 = pNode->psi; } pNode = pElem->pNodes[ (index + 1) % 4 ]; if ( pNode->nodeType ISNOT CONTACT ) { psi2 = pDevice->dcSolution[pNode->psiEqn]; } else { psi2 = pNode->psi; } if ( index <= 1 ) { pEdge->dPsi = psi2 - psi1; } else { pEdge->dPsi = psi1 - psi2; } *(pDevice->devState0 + pEdge->edgeDpsi) = pEdge->dPsi; if ( pElem->elemType IS SEMICON ) { /* Calculate weighted driving forces - wdfn & wdfp for the edge */ dPsiP = pEdge->dPsi - pEdge->dVBand; bernoulli( dPsiP, &bPsiP, &dbPsiP, &bMPsiP, &dbMPsiP, NOT currentOnly); if ( index <= 1 ) { pC = *(pDevice->devState0 + pElem->pNodes[ index ]->nodeP); pP1 = *(pDevice->devState0 + pElem->pNodes[ index+1 ]->nodeP); } else { pC = *(pDevice->devState0 + pElem->pNodes[(index+1)%4]->nodeP); pP1 = *(pDevice->devState0 + pElem->pNodes[ index ]->nodeP); } pEdge->wdfp = bPsiP * pC - bMPsiP * pP1; pEdge->jp = 0.0; if ( NOT currentOnly ) { pEdge->dWpDpsiP1 = dbPsiP * pC - dbMPsiP * pP1; pEdge->dWpDp = bPsiP; pEdge->dWpDpP1 = - bMPsiP; pEdge->dJpDpsiP1 = 0.0; pEdge->dJpDp = 0.0; pEdge->dJpDpP1 = 0.0; } } } } } /* DAG: calculate mobilities for channel elems */ if ( SurfaceMobility ) { for ( pCh = pDevice->pChannel; pCh ISNOT NIL(TWOchannel); pCh = pCh->next ) { pElem = pCh->pNElem; switch (pCh->type) { case 0: eSurf = - 0.5 * (pElem->pLeftEdge->dPsi + pElem->pRightEdge->dPsi ) * pElem->epsRel / pElem->dy; qInt = 0.5 * pElem->pBotEdge->qf; break; case 1: eSurf = - 0.5 * (pElem->pTopEdge->dPsi + pElem->pBotEdge->dPsi ) * pElem->epsRel / pElem->dx; qInt = 0.5 * pElem->pLeftEdge->qf; break; case 2: eSurf = - 0.5 * (pElem->pLeftEdge->dPsi + pElem->pRightEdge->dPsi ) * pElem->epsRel / pElem->dy; qInt = 0.5 * pElem->pTopEdge->qf; break; case 3: eSurf = - 0.5 * (pElem->pTopEdge->dPsi + pElem->pBotEdge->dPsi ) * pElem->epsRel / pElem->dx; qInt = 0.5 * pElem->pRightEdge->qf; break; } eSurf += qInt; pElem = pCh->pSeed; nextIndex = (pCh->type + 2)%4; while (pElem && pElem->channel == pCh->id) { TWOPmobility( pElem, eSurf ); pElem = pElem->pElems[ nextIndex ]; } } /* endfor pCH ISNOT NIL */ } /* endif SurfaceMobility */ /* calculate the current densities assuming mobility value depend on Ex,Ey*/ for ( eIndex = 1; eIndex <= pDevice->numElems; eIndex++ ) { pElem = pDevice->elements[ eIndex ]; rDx = 1.0 / pElem->dx; rDy = 1.0 / pElem->dy; for ( index = 0; index <= 3; index++ ) { pEdge = pElem->pEdges[ index ]; /* calculate conductive currents */ if ( pElem->elemType IS SEMICON ) { /* get mobility for this edge */ if ( NOT pElem->channel ) { /* Calculate mobility for non-channel elements */ muP = pElem->mup0; dMuP = 0.0; dPsiP = pEdge->dPsi - pEdge->dVBand; if ( index%2 IS 0 ) { MOBfieldDep( pElem->matlInfo, HOLE, - dPsiP * rDx, &muP, &dMuP ); } else { MOBfieldDep( pElem->matlInfo, HOLE, - dPsiP * rDy, &muP, &dMuP ); } } else { /* Retrieve previously calculated value. */ muP = pElem->mup; dMuP = 0.0; } switch ( index ) { case 0: muP *= pEdge->kPos * rDx; dMuP *= pEdge->kPos * rDx * rDx; break; case 1: muP *= pEdge->kNeg * rDy; dMuP *= pEdge->kNeg * rDy * rDy; break; case 2: muP *= pEdge->kNeg * rDx; dMuP *= pEdge->kNeg * rDx * rDx; break; case 3: muP *= pEdge->kPos * rDy; dMuP *= pEdge->kPos * rDy * rDy; break; } /* Now that the mobility for this edge is known, do current */ pEdge->jp += muP * pEdge->wdfp; if ( NOT currentOnly ) { pEdge->dJpDpsiP1 += muP * pEdge->dWpDpsiP1; pEdge->dJpDp += muP * pEdge->dWpDp; pEdge->dJpDpP1 += muP * pEdge->dWpDpP1; if ( MobDeriv AND (NOT pElem->channel) ) { pEdge->dJpDpsiP1 -= dMuP * pEdge->wdfp; } } } /* calculate displacement current only once */ if ( pElem->evalEdges[ index ] ) { if ( tranAnalysis ) { if ( index IS 0 OR index IS 2 ) { /* horizontal edges */ pEdge->jd = -integrate(pDevice->devStates, info, pEdge->edgeDpsi) * rDx; } else { /* vertical edges */ pEdge->jd = -integrate(pDevice->devStates, info, pEdge->edgeDpsi) * rDy; } } } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -