📄 scfblas.f
字号:
SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, $ BETA, Y, INCY )* .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS* .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )* ..** Purpose* =======** DGEMV performs one of the matrix-vector operations** y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,** where alpha and beta are scalars, x and y are vectors and A is an* m by n matrix.** Parameters* ==========** TRANS - CHARACTER*1.* On entry, TRANS specifies the operation to be performed as* follows:** TRANS = 'N' or 'n' y := alpha*A*x + beta*y.** TRANS = 'T' or 't' y := alpha*A'*x + beta*y.** TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.** Unchanged on exit.** M - INTEGER.* On entry, M specifies the number of rows of the matrix A.* M must be at least zero.* Unchanged on exit.** N - INTEGER.* On entry, N specifies the number of columns of the matrix A.* N must be at least zero.* Unchanged on exit.** ALPHA - DOUBLE PRECISION.* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).* Before entry, the leading m by n part of the array A must* contain the matrix of coefficients.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. LDA must be at least* max( 1, m ).* Unchanged on exit.** X - DOUBLE PRECISION array of DIMENSION at least* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'* and at least* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.* Before entry, the incremented array X must contain the* vector x.* Unchanged on exit.** INCX - INTEGER.* On entry, INCX specifies the increment for the elements of* X. INCX must not be zero.* Unchanged on exit.** BETA - DOUBLE PRECISION.* On entry, BETA specifies the scalar beta. When BETA is* supplied as zero then Y need not be set on input.* Unchanged on exit.** Y - DOUBLE PRECISION array of DIMENSION at least* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'* and at least* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.* Before entry with BETA non-zero, the incremented array Y* must contain the vector y. On exit, Y is overwritten by the* updated vector y.** INCY - INTEGER.* On entry, INCY specifies the increment for the elements of* Y. INCY must not be zero.* Unchanged on exit.*** Level 2 Blas routine.** -- Written on 22-October-1986.* Jack Dongarra, Argonne National Lab.* Jeremy Du Croz, Nag Central Office.* Sven Hammarling, Nag Central Office.* Richard Hanson, Sandia National Labs.*** .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )* .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* .. External Subroutines .. EXTERNAL XERBLA* .. Intrinsic Functions .. INTRINSIC MAX* ..* .. Executable Statements ..** Test the input parameters.* INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DGEMV ', INFO ) RETURN END IF** Quick return if possible.* IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) $ RETURN** Set LENX and LENY, the lengths of the vectors x and y, and set* up the start points in X and Y.* IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF** Start the operations. In this version the elements of A are* accessed sequentially with one pass through A.** First form y := beta*y.* IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) $ RETURN IF( LSAME( TRANS, 'N' ) )THEN** Form y := alpha*A*x + y.* JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) DO 50, I = 1, M Y( I ) = Y( I ) + TEMP*A( I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY DO 70, I = 1, M Y( IY ) = Y( IY ) + TEMP*A( I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE** Form y := alpha*A'*x + y.* JY = KY IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = ZERO DO 90, I = 1, M TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120, J = 1, N TEMP = ZERO IX = KX DO 110, I = 1, M TEMP = TEMP + A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF* RETURN** End of DGEMV .* END*deck dblas3*mdc*on fortran_dblas3c*************************************************************************** File of the DOUBLE PRECISION Level-3 BLAS.* ==========================================** SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K,* $ ALPHA, A, LDA, B, LDB, BETA, C, LDC )** SUBROUTINE DSYMM ( SIDE, UPLO, TRANSB, M, N,* $ ALPHA, A, LDA, B, LDB, BETA, C, LDC )** SUBROUTINE DSYRK ( UPLO, TRANSA, N, K,* $ ALPHA, A, LDA, BETA, C, LDC )** SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N,* $ A, LDA, B, LDB )** SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N,* $ A, LDA, B, LDB )** See:** Dongarra J. J., Du Croz J. J., Duff I. and Hammarling S.* A Proposal for a set of Level 3 Basic Linear Algebra* Subprograms. Technical Memorandum No.88, Mathematics and* Computer Science Division, Argonne National Laboratory,* 9700 South Cass Avenue, Argonne, Illinois 60439.*************************************************************************** SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC )* .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER M, N, K, LDA, LDB, LDC CHARACTER*1 TRANSA, TRANSB* .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * )* ..** Purpose* =======** DGEMM performs one of the matrix-matrix operations** C := alpha*op( A )*op( B ) + beta*C,** where op( X ) is one of** op( X ) = X or op( X ) = X',** alpha and beta are scalars, and A, B and C are matrices, with op( A )* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.** Parameters* ==========** TRANSA - CHARACTER*1.* On entry, TRANSA specifies the form of op( A ) to be used in* the matrix multiplication as follows:** TRANSA = 'N' or 'n', op( A ) = A.** TRANSA = 'T' or 't', op( A ) = A'.** TRANSA = 'C' or 'c', op( A ) = A'.** Unchanged on exit.** TRANSB - CHARACTER*1.* On entry, TRANSB specifies the form of op( B ) to be used in* the matrix multiplication as follows:** TRANSA = 'N' or 'n', op( B ) = B.** TRANSA = 'T' or 't', op( B ) = B'.** TRANSA = 'C' or 'c', op( B ) = B'.** Unchanged on exit.** M - INTEGER.* On entry, M specifies the number of rows of the matrix* op( A ) and of the matrix C. M must be at least zero.* Unchanged on exit.** N - INTEGER.* On entry, N specifies the number of columns of the matrix* op( B ) and the number of columns of the matrix C. N must be* at least zero.* Unchanged on exit.** K - INTEGER.* On entry, K specifies the number of columns of the matrix* op( A ) and the number of rows of the matrix op( B ). K must* be at least zero.* Unchanged on exit.** ALPHA - DOUBLE PRECISION.* On entry, ALPHA specifies the scalar alpha.* Unchanged on exit.** A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is* k when TRANSA = 'N' or 'n', and is m otherwise.* Before entry with TRANSA = 'N' or 'n', the leading m by k* part of the array A must contain the matrix A, otherwise* the leading k by m part of the array A must contain the* matrix A.* Unchanged on exit.** LDA - INTEGER.* On entry, LDA specifies the first dimension of A as declared* in the calling (sub) program. When TRANSA = 'N' or 'n' then* LDA must be at least max( 1, m ), otherwise LDA must be at* least max( 1, k ).* Unchanged on exit.** B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is* n when TRANSB = 'N' or 'n', and is k otherwise.* Before entry with TRANSB = 'N' or 'n', the leading k by n* part of the array B must contain the matrix B, otherwise* the leading n by k part of the array B must contain the* matrix B.* Unchanged on exit.** LDB - INTEGER.* On entry, LDB specifies the first dimension of B as declared* in the calling (sub) program. When TRANSB = 'N' or 'n' then* LDB must be at least max( 1, k ), otherwise LDB must be at* least max( 1, n ).* Unchanged on exit.** BETA - DOUBLE PRECISION.* On entry, BETA specifies the scalar beta. When BETA is* supplied as zero then C need not be set on input.* Unchanged on exit.** C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).* Before entry, the leading m by n part of the array C must* contain the matrix C, except when beta is zero, in which* case C need not be set on entry.* On exit, the array C is overwritten by the m by n matrix* ( alpha*op( A )*op( B ) + beta*C ).** LDC - INTEGER.* On entry, LDC specifies the first dimension of C as declared* in the calling (sub) program. LDC must be at least* max( 1, m ).* Unchanged on exit.*** Level 3 Blas routine.** -- Written on 30-April-1987.* Sven Hammarling, Nag Central Office.*** .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )* .. Local Scalars .. INTEGER I, INFO, J, NCOLA, NROWA, NROWB LOGICAL NOTA, NOTB* .. External Functions .. LOGICAL LSAME EXTERNAL LSAME* .. External Subroutines .. EXTERNAL XERBLA, DGEMV* .. Intrinsic Functions .. INTRINSIC MAX* ..* .. Executable Statements ..
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -