⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spice.txt

📁 支持数字元件仿真的SPICE插件
💻 TXT
📖 第 1 页 / 共 5 页
字号:
TEXT: HTEXT:                                   Modified Gummel-Poon BJT Parameters.TEXT: H               name   parameter                               units   default    example   areaTEXT: HTEXT: H          1    GIS     Htransport saturation current            A       1.0E-16    1.0E-15   *TEXT: H          2    GBF     Hideal maximum forward beta              -       100        100TEXT: H          3    GNF     Hforward current emission coefficient    -       1.0        1TEXT: H          4    GVAF    Hforward Early voltage                   V       infinite   200TEXT: H          5    GIKF    Hcorner for forward betaTEXT: H                      high current roll-off                   A       infinite   0.01      *TEXT: H          6    GISE    HB-E leakage saturation current          A       0          1.0E-13   *TEXT: H          7    GNE     HB-E leakage emission coefficient        -       1.5        2TEXT: H          8    GBR     Hideal maximum reverse beta              -       1          0.1TEXT: H          9    GNR     Hreverse current emission coefficient    -       1          1TEXT: H          10   GVAR    Hreverse Early voltage                   V       infinite   200TEXT: H          11   GIKR    Hcorner for reverse betaTEXT: H                      high current roll-off                   A       infinite   0.01      *TEXT: H          12   GISC    HB-C leakage saturation current          A       0          1.0E-13   *TEXT: HTEXT: TEXT:           13   GNC     HB-C leakage emission coefficient        -       2          1.5TEXT: H          14   GRB     Hzero bias base resistance               Ohms    0          100       *TEXT: H          15   GIRB    Hcurrent where base resistanceTEXT: H                      falls halfway to its min value          A       infinite   0.1       *TEXT: H          16   GRBM    Hminimum base resistanceTEXT: H                      at high currents                        Ohms    RB         10        *TEXT: H          17   GRE     Hemitter resistance                      Ohms    0          1         *TEXT: H          18   GRC     Hcollector resistance                    Ohms    0          10        *TEXT: H          19   GCJE    HB-E zero-bias depletion capacitance     F       0          2PF       *TEXT: H          20   GVJE    HB-E built-in potential                  V       0.75       0.6TEXT: H          21   GMJE    HB-E junction exponential factor         -       0.33       0.33TEXT: H          22   GTF     Hideal forward transit time              sec     0          0.1NsTEXT: H          23   GXTF    Hcoefficient for bias dependence of TF   -       0TEXT: H          24   GVTF    Hvoltage describing VBCTEXT: H                      dependence of TF                        V       infiniteTEXT: H          25   GITF    Hhigh-current parameterTEXT: H                      for effect on TF                        A       0                    *TEXT: H          26   GPTF    Hexcess phase at freq=1.0/(TF*2PI) Hz    deg     0TEXT: H          27   GCJC    HB-C zero-bias depletion capacitance     F       0          2PF       *TEXT: H          28   GVJC    HB-C built-in potential                  V       0.75       0.5TEXT: H          29   GMJC    HB-C junction exponential factor         -       0.33       0.5TEXT: H          30   GXCJC   Hfraction of B-C depletion capacitance   -       1TEXT: H                      connected to internal base nodeTEXT: H          31   GTR     Hideal reverse transit time              sec     0          10NsTEXT: H          32   GCJS    Hzero-bias collector-substrateTEXT: H                      capacitance                             F       0          2PF       *TEXT: H          33   GVJS    Hsubstrate junction built-in potential   V       0.75TEXT: H          34   GMJS    Hsubstrate junction exponential factor   -       0          0.5TEXT: H          35   GXTB    Hforward and reverse betaTEXT: H                      temperature exponent                    -       0TEXT: H          36   GEG     Henergy gap for temperatureTEXT: H                      effect on IS                            eV      1.11TEXT: H          37   GXTI    Htemperature exponent for effect on IS   -       3TEXT: H          38   GKF     Hflicker-noise coefficient               -       0TEXT: H          39   GAF     Hflicker-noise exponent                  -       1TEXT: H          40   GFC     Hcoefficient for forward-biasTEXT: H                      depletion capacitance formula           -       0.5TEXT: HTEXT: SEEALSO: SPICE:qSUBJECT: cTITLE: Capacitor ModelsTEXT: TEXT:                The capacitor model contains process  information  thatTEXT: H          may  be  used  to  compute  the  capacitance  from  strictlyTEXT: H          geometric information.TEXT: HTEXT:           Gname     Hparameter                       units       default   exampleTEXT: HTEXT: H          GCJ       Hjunction bottom capacitance     F/meters2   -         5e-5TEXT: H          GCJSW     Hjunction sidewall capacitance   F/meters    -         2e-11TEXT: H          GDEFW     Hdefault device width            meters      1e-6      2e-6TEXT: H          GNARROW   Hnarrowing due to side etching   meters      0.0       1e-7TEXT: HTEXT: TEXT:                The capacitor has a capacitance computed asTEXT: HTEXT:           CAP=CJx(LENGTH-NARROW)x(WIDTH-NARROW)+2xCJSWx(LENGTH+WIDTH-2*NARROW)TEXT: HTEXT: SEEALSO: SPICE:cSUBJECT: dTITLE: Diode ModelsTEXT: TEXT:                The dc characteristics of the diode are  determined  byTEXT: H          the  parameters  GIS  Hand  GNH.   An  ohmic  resistance, GRSH, isTEXT: H          included.  Charge storage effects are modeled by  a  transitTEXT: H          time,  GTTH, and a nonlinear depletion layer capacitance whichTEXT: H          is determined by the parameters GCJO, VJH, and  GMH.   The  tem-TEXT: H          perature  dependence of the saturation current is defined byTEXT: H          the parameters  GEGH,  the  energy  and  GXTIH,  the  saturationTEXT: H          current  temperature exponent.  Reverse breakdown is modeledTEXT: H          by an exponential increase in the reverse diode current  andTEXT: H          is  determined  by  the parameters GBV Hand GIBV H(both of whichTEXT: H          are positive numbers).TEXT: HTEXT:                Gname   Hparameter                        units   default    example    areaTEXT: HTEXT: H           1   GIS     Hsaturation current               A       1.0E-14    1.0E-14    *TEXT: H           2   GRS     Hohmic resistance                 Ohm     0          10         *TEXT: H           3   GN      Hemission coefficient             -       1          1.0TEXT: H           4   GTT     Htransit-time                     sec     0          0.1NsTEXT: H           5   GCJO    Hzero-bias junction capacitance   F       0          2PF        *TEXT: H           6   GVJ     Hjunction potential               V       1          0.6TEXT: H           7   GM      Hgrading coefficient              -       0.5        0.5TEXT: H           8   GEG     Hactivation energy                eV      1.11       1.11 SiTEXT: H                                                                          0.69 SbdTEXT: H                                                                          0.67 GeTEXT: H           9   GXTI    Hsaturation-current temp. exp     -       3.0        3.0 jnTEXT: H                                                                          2.0 SbdTEXT: H          10   GKF     Hflicker noise coefficient        -       0TEXT: H          11   GAF     Hflicker noise exponent           -       1TEXT: H          12   GFC     Hcoefficient for forward-bias     -       0.5TEXT: H                      depletion capacitance formulaTEXT: H          13   GBV     Hreverse breakdown voltage        V       infinite   40.0TEXT: H          14   GIBV    Hcurrent at breakdown voltage     A       1.0E-3TEXT: HTEXT: SEEALSO: SPICE:juncdSUBJECT: jfetTITLE: JFET ModelsTEXT: TEXT:                The JFET model is derived from the FET model of  Shich-TEXT: H          man  and  Hodges.  The DC characteristics are defined by theTEXT: H          parameters GVTO Hand GBETAH, which determine  the  variation  ofTEXT: H          drain  current  with  gate voltage, GLAMBDAH, which determinesTEXT: H          the output conductance, and GISH, the  saturation  current  ofTEXT: H          the  two  gate junctions.  Two ohmic resistances, GRD Hand GRSH,TEXT: H          are included.  Charge storage is modeled by nonlinear deple-TEXT: H          tion  layer  capacitances for both gate junctions which varyTEXT: H          as the -1/2 power of junction voltage and are defined by theTEXT: H          parameters GCGS, CGD, Hand GPBH.TEXT: HTEXT:                name     parameter                            units    default   example   areaTEXT: HTEXT: H           1   GVTO      Hthreshold voltage                    V        -2.0      -2.0TEXT: H           2   GBETA     Htransconductance parameter           A/V**2   1.0E-4    1.0E-3    *TEXT: H           3   GLAMBDA   Hchannel length modulationTEXT: H                        parameter                            1/V      0         1.0E-4TEXT: H           4   GRD       Hdrain ohmic resistance               Ohm      0         100       *TEXT: H           5   GRS       Hsource ohmic resistance              Ohm      0         100       *TEXT: H           6   GCGS      Hzero-bias G-S junction capacitance   F        0         5PF       *TEXT: H           7   GCGD      Hzero-bias G-D junction capacitance   F        0         1PF       *TEXT: H           8   GPB       Hgate junction potential              V        1         0.6TEXT: H           9   GIS       Hgate junction saturation current     A        1.0E-14   1.0E-14   *TEXT: H          10   GKF       Hflicker noise coefficient            -        0TEXT: H          11   GAF       Hflicker noise exponent               -        1TEXT: H          12   GFC       Hcoefficient for forward-bias         -        0.5TEXT: H                        depletion capacitance formulaTEXT: HTEXT: SEEALSO: SPICE:jSUBJECT: mesfetTITLE: MESFET ModelsTEXT: TEXT:                The MESFET model is derived from the GaAs FET model  ofTEXT: H          Statz  et  al.  as described in [4].  The dc characteristicsTEXT: H          are defined by the parameters GVTOH, GBH, and GBETAH, which deter-TEXT: H          mine  the  variation  of  drain  current  with gate voltage,TEXT: H          GALPHAH, which  determines  saturation  voltage,  and  GLAMBDAH,TEXT: H          which  determines  the  output  conductance. The formula areTEXT: H          given byTEXT: HTEXT: TEXT:           Id = 1 + b(Vgs - VT)TEXT:                  8| (Vgs-VT)2_______________TEXT:                                |TEXT:                                |TEXT:                                |TEXT:                                |TEXT:                                 1 -TEXT:                                     |TEXT:                                     |TEXT:                                     |TEXT:                                      1-o( 3TEXT:                                         Vds___TEXT:                                            |TEXT:                                            |TEXT:                                            |TEXT: TEXT:                                             3|TEXT:                                              |TEXT:                                              |TEXT:                                              |TEXT:                                               (1 + ,\ Vds)     for 0<Vds<o(TEXT:                                                                         3_TEXT: HTEXT: TEXT:                  Id = 1 + b(Vgs - VT)TEXT:                         8| (Vgs-VT)2_______________(1 + ,\ Vds)     for Vds>o(TEXT:                                                              3_TEXT: HTEXT:           Two ohmic resistances, GRD  Hand  GRSH,  are  included.   ChargeTEXT: H          storage  is  modeled  by  total gate charge as a function ofTEXT: H          gate-drain and gate-source voltages and is  defined  by  theTEXT: H          parameters GCGS, CGD, Hand GPBH.TEXT: HTEXT:                name     parameter                            units    default   example   areaTEXT: HTEXT: H           1   GVTO      Hpinch-off voltage                    V        -2.0      -2.0TEXT: H           2   GBETA     Htransconductance parameter           A/V**2   1.0E-4    1.0E-3    *TEXT: H           3   GB        Hdoping tail extending parameter      1/V      0.3       0.3       *TEXT: H           4   GALPHA    Hsaturation voltage parameter         1/V      2         2         *TEXT: H           5   GLAMBDA   Hchannel length modulationTEXT: H                        parameter                            1/V      0         1.0E-4TEXT: H           6   GRD       Hdrain ohmic resistance               Ohm      0         100       *TEXT: H           7   GRS       Hsource ohmic resistance              Ohm      0         100       *TEXT: H           8   GCGS      Hzero-bias G-S junction capacitance   F        0         5PF       *TEXT: H           9   GCGD      Hzero-bias G-D junction capacitance   F        0         1PF       *TEXT: H          10   GPB       Hgate junction potential              V        1         0.6TEXT: H          11   GKF       Hflicker noise coefficient            -        0TEXT: H          12   GAF       Hflicker noise exponent               -        1TEXT: H          13   GFC       Hcoefficient for forward-bias         -        0.5TEXT: H                        depletion capacitance formulaTEXT: HTEXT: SEEALSO: SPICE:zSUBJECT: mosfetTITLE: MOSFET ModelsTEXT: TEXT:                SPICE provides four MOSFET device models, which  differTEXT: H          in  the formulation of the I-V characteristic.  The variableTEXT: H          GLEVEL Hspecifies the model to be used:TEXT: HTEXT:              LEVEL = 1 ->    Shichman-HodgesTEXT: H             LEVEL = 2 ->    MOS2 (as described in [1])TEXT: H             LEVEL = 3 ->    MOS3, a semi-empirical model (see [1])TEXT: H             LEVEL = 4 ->    BSIM (as described in [2])TEXT: HTEXT: TEXT:                The dc characteristics of the level 1 through  level  3TEXT: H          MOSFETs  are  defined  by  the  device  parameters  GVTO, KP,TEXT: H          LAMBDA, PHI Hand GGAMMAH.  These  parameters  are  computed  by

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -