📄 spice.txt
字号:
TEXT: HTEXT: Modified Gummel-Poon BJT Parameters.TEXT: H name parameter units default example areaTEXT: HTEXT: H 1 GIS Htransport saturation current A 1.0E-16 1.0E-15 *TEXT: H 2 GBF Hideal maximum forward beta - 100 100TEXT: H 3 GNF Hforward current emission coefficient - 1.0 1TEXT: H 4 GVAF Hforward Early voltage V infinite 200TEXT: H 5 GIKF Hcorner for forward betaTEXT: H high current roll-off A infinite 0.01 *TEXT: H 6 GISE HB-E leakage saturation current A 0 1.0E-13 *TEXT: H 7 GNE HB-E leakage emission coefficient - 1.5 2TEXT: H 8 GBR Hideal maximum reverse beta - 1 0.1TEXT: H 9 GNR Hreverse current emission coefficient - 1 1TEXT: H 10 GVAR Hreverse Early voltage V infinite 200TEXT: H 11 GIKR Hcorner for reverse betaTEXT: H high current roll-off A infinite 0.01 *TEXT: H 12 GISC HB-C leakage saturation current A 0 1.0E-13 *TEXT: HTEXT: TEXT: 13 GNC HB-C leakage emission coefficient - 2 1.5TEXT: H 14 GRB Hzero bias base resistance Ohms 0 100 *TEXT: H 15 GIRB Hcurrent where base resistanceTEXT: H falls halfway to its min value A infinite 0.1 *TEXT: H 16 GRBM Hminimum base resistanceTEXT: H at high currents Ohms RB 10 *TEXT: H 17 GRE Hemitter resistance Ohms 0 1 *TEXT: H 18 GRC Hcollector resistance Ohms 0 10 *TEXT: H 19 GCJE HB-E zero-bias depletion capacitance F 0 2PF *TEXT: H 20 GVJE HB-E built-in potential V 0.75 0.6TEXT: H 21 GMJE HB-E junction exponential factor - 0.33 0.33TEXT: H 22 GTF Hideal forward transit time sec 0 0.1NsTEXT: H 23 GXTF Hcoefficient for bias dependence of TF - 0TEXT: H 24 GVTF Hvoltage describing VBCTEXT: H dependence of TF V infiniteTEXT: H 25 GITF Hhigh-current parameterTEXT: H for effect on TF A 0 *TEXT: H 26 GPTF Hexcess phase at freq=1.0/(TF*2PI) Hz deg 0TEXT: H 27 GCJC HB-C zero-bias depletion capacitance F 0 2PF *TEXT: H 28 GVJC HB-C built-in potential V 0.75 0.5TEXT: H 29 GMJC HB-C junction exponential factor - 0.33 0.5TEXT: H 30 GXCJC Hfraction of B-C depletion capacitance - 1TEXT: H connected to internal base nodeTEXT: H 31 GTR Hideal reverse transit time sec 0 10NsTEXT: H 32 GCJS Hzero-bias collector-substrateTEXT: H capacitance F 0 2PF *TEXT: H 33 GVJS Hsubstrate junction built-in potential V 0.75TEXT: H 34 GMJS Hsubstrate junction exponential factor - 0 0.5TEXT: H 35 GXTB Hforward and reverse betaTEXT: H temperature exponent - 0TEXT: H 36 GEG Henergy gap for temperatureTEXT: H effect on IS eV 1.11TEXT: H 37 GXTI Htemperature exponent for effect on IS - 3TEXT: H 38 GKF Hflicker-noise coefficient - 0TEXT: H 39 GAF Hflicker-noise exponent - 1TEXT: H 40 GFC Hcoefficient for forward-biasTEXT: H depletion capacitance formula - 0.5TEXT: HTEXT: SEEALSO: SPICE:qSUBJECT: cTITLE: Capacitor ModelsTEXT: TEXT: The capacitor model contains process information thatTEXT: H may be used to compute the capacitance from strictlyTEXT: H geometric information.TEXT: HTEXT: Gname Hparameter units default exampleTEXT: HTEXT: H GCJ Hjunction bottom capacitance F/meters2 - 5e-5TEXT: H GCJSW Hjunction sidewall capacitance F/meters - 2e-11TEXT: H GDEFW Hdefault device width meters 1e-6 2e-6TEXT: H GNARROW Hnarrowing due to side etching meters 0.0 1e-7TEXT: HTEXT: TEXT: The capacitor has a capacitance computed asTEXT: HTEXT: CAP=CJx(LENGTH-NARROW)x(WIDTH-NARROW)+2xCJSWx(LENGTH+WIDTH-2*NARROW)TEXT: HTEXT: SEEALSO: SPICE:cSUBJECT: dTITLE: Diode ModelsTEXT: TEXT: The dc characteristics of the diode are determined byTEXT: H the parameters GIS Hand GNH. An ohmic resistance, GRSH, isTEXT: H included. Charge storage effects are modeled by a transitTEXT: H time, GTTH, and a nonlinear depletion layer capacitance whichTEXT: H is determined by the parameters GCJO, VJH, and GMH. The tem-TEXT: H perature dependence of the saturation current is defined byTEXT: H the parameters GEGH, the energy and GXTIH, the saturationTEXT: H current temperature exponent. Reverse breakdown is modeledTEXT: H by an exponential increase in the reverse diode current andTEXT: H is determined by the parameters GBV Hand GIBV H(both of whichTEXT: H are positive numbers).TEXT: HTEXT: Gname Hparameter units default example areaTEXT: HTEXT: H 1 GIS Hsaturation current A 1.0E-14 1.0E-14 *TEXT: H 2 GRS Hohmic resistance Ohm 0 10 *TEXT: H 3 GN Hemission coefficient - 1 1.0TEXT: H 4 GTT Htransit-time sec 0 0.1NsTEXT: H 5 GCJO Hzero-bias junction capacitance F 0 2PF *TEXT: H 6 GVJ Hjunction potential V 1 0.6TEXT: H 7 GM Hgrading coefficient - 0.5 0.5TEXT: H 8 GEG Hactivation energy eV 1.11 1.11 SiTEXT: H 0.69 SbdTEXT: H 0.67 GeTEXT: H 9 GXTI Hsaturation-current temp. exp - 3.0 3.0 jnTEXT: H 2.0 SbdTEXT: H 10 GKF Hflicker noise coefficient - 0TEXT: H 11 GAF Hflicker noise exponent - 1TEXT: H 12 GFC Hcoefficient for forward-bias - 0.5TEXT: H depletion capacitance formulaTEXT: H 13 GBV Hreverse breakdown voltage V infinite 40.0TEXT: H 14 GIBV Hcurrent at breakdown voltage A 1.0E-3TEXT: HTEXT: SEEALSO: SPICE:juncdSUBJECT: jfetTITLE: JFET ModelsTEXT: TEXT: The JFET model is derived from the FET model of Shich-TEXT: H man and Hodges. The DC characteristics are defined by theTEXT: H parameters GVTO Hand GBETAH, which determine the variation ofTEXT: H drain current with gate voltage, GLAMBDAH, which determinesTEXT: H the output conductance, and GISH, the saturation current ofTEXT: H the two gate junctions. Two ohmic resistances, GRD Hand GRSH,TEXT: H are included. Charge storage is modeled by nonlinear deple-TEXT: H tion layer capacitances for both gate junctions which varyTEXT: H as the -1/2 power of junction voltage and are defined by theTEXT: H parameters GCGS, CGD, Hand GPBH.TEXT: HTEXT: name parameter units default example areaTEXT: HTEXT: H 1 GVTO Hthreshold voltage V -2.0 -2.0TEXT: H 2 GBETA Htransconductance parameter A/V**2 1.0E-4 1.0E-3 *TEXT: H 3 GLAMBDA Hchannel length modulationTEXT: H parameter 1/V 0 1.0E-4TEXT: H 4 GRD Hdrain ohmic resistance Ohm 0 100 *TEXT: H 5 GRS Hsource ohmic resistance Ohm 0 100 *TEXT: H 6 GCGS Hzero-bias G-S junction capacitance F 0 5PF *TEXT: H 7 GCGD Hzero-bias G-D junction capacitance F 0 1PF *TEXT: H 8 GPB Hgate junction potential V 1 0.6TEXT: H 9 GIS Hgate junction saturation current A 1.0E-14 1.0E-14 *TEXT: H 10 GKF Hflicker noise coefficient - 0TEXT: H 11 GAF Hflicker noise exponent - 1TEXT: H 12 GFC Hcoefficient for forward-bias - 0.5TEXT: H depletion capacitance formulaTEXT: HTEXT: SEEALSO: SPICE:jSUBJECT: mesfetTITLE: MESFET ModelsTEXT: TEXT: The MESFET model is derived from the GaAs FET model ofTEXT: H Statz et al. as described in [4]. The dc characteristicsTEXT: H are defined by the parameters GVTOH, GBH, and GBETAH, which deter-TEXT: H mine the variation of drain current with gate voltage,TEXT: H GALPHAH, which determines saturation voltage, and GLAMBDAH,TEXT: H which determines the output conductance. The formula areTEXT: H given byTEXT: HTEXT: TEXT: Id = 1 + b(Vgs - VT)TEXT: 8| (Vgs-VT)2_______________TEXT: |TEXT: |TEXT: |TEXT: |TEXT: 1 -TEXT: |TEXT: |TEXT: |TEXT: 1-o( 3TEXT: Vds___TEXT: |TEXT: |TEXT: |TEXT: TEXT: 3|TEXT: |TEXT: |TEXT: |TEXT: (1 + ,\ Vds) for 0<Vds<o(TEXT: 3_TEXT: HTEXT: TEXT: Id = 1 + b(Vgs - VT)TEXT: 8| (Vgs-VT)2_______________(1 + ,\ Vds) for Vds>o(TEXT: 3_TEXT: HTEXT: Two ohmic resistances, GRD Hand GRSH, are included. ChargeTEXT: H storage is modeled by total gate charge as a function ofTEXT: H gate-drain and gate-source voltages and is defined by theTEXT: H parameters GCGS, CGD, Hand GPBH.TEXT: HTEXT: name parameter units default example areaTEXT: HTEXT: H 1 GVTO Hpinch-off voltage V -2.0 -2.0TEXT: H 2 GBETA Htransconductance parameter A/V**2 1.0E-4 1.0E-3 *TEXT: H 3 GB Hdoping tail extending parameter 1/V 0.3 0.3 *TEXT: H 4 GALPHA Hsaturation voltage parameter 1/V 2 2 *TEXT: H 5 GLAMBDA Hchannel length modulationTEXT: H parameter 1/V 0 1.0E-4TEXT: H 6 GRD Hdrain ohmic resistance Ohm 0 100 *TEXT: H 7 GRS Hsource ohmic resistance Ohm 0 100 *TEXT: H 8 GCGS Hzero-bias G-S junction capacitance F 0 5PF *TEXT: H 9 GCGD Hzero-bias G-D junction capacitance F 0 1PF *TEXT: H 10 GPB Hgate junction potential V 1 0.6TEXT: H 11 GKF Hflicker noise coefficient - 0TEXT: H 12 GAF Hflicker noise exponent - 1TEXT: H 13 GFC Hcoefficient for forward-bias - 0.5TEXT: H depletion capacitance formulaTEXT: HTEXT: SEEALSO: SPICE:zSUBJECT: mosfetTITLE: MOSFET ModelsTEXT: TEXT: SPICE provides four MOSFET device models, which differTEXT: H in the formulation of the I-V characteristic. The variableTEXT: H GLEVEL Hspecifies the model to be used:TEXT: HTEXT: LEVEL = 1 -> Shichman-HodgesTEXT: H LEVEL = 2 -> MOS2 (as described in [1])TEXT: H LEVEL = 3 -> MOS3, a semi-empirical model (see [1])TEXT: H LEVEL = 4 -> BSIM (as described in [2])TEXT: HTEXT: TEXT: The dc characteristics of the level 1 through level 3TEXT: H MOSFETs are defined by the device parameters GVTO, KP,TEXT: H LAMBDA, PHI Hand GGAMMAH. These parameters are computed by
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -