⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cvar.m

📁 Implementation to linear, quadratic and logistic discriminant analysis, for examples
💻 M
字号:
function [lambda, ratio] = cvar(f)%LDA/CVAR Fisher's linear discriminant analysis.%   [LAMBDA, RATIO] = CVAR(F) return the canonical variates of the%   Fisher's linear discriminant analysis in the columns of LAMBDA%   based on the LDA object F. LAMBDA is a scaling matrix which%   maximises the ratio of the between to within-groups%   variance. RATIO gives the percentage of between-group variance%   accounted for by the corresponding canonical variate.%%   References:%   B. D. Ripley (1996) Pattern Classification and Neural%   Networks. Cambridge.   %   Copyright (c) 1999 Michael Kiefte.%   Based also on algorithm presented in S-Plus code written by Ripley%   and Venables.   %   $Log$prior = f.classifier.prior;M = f.means;S = f.scale;g = length(prior);n = sum(f.classifier.counts);K = f.est ~= 1;Ms = diag(sqrt(n*prior/(g - K))) * ...     (M - repmat(prior * M, g, 1)) * S;[u s v] = svd(Ms, 0);r = sum(diag(s) > n*eps*s(1));lambda = S * v(:, 1:r);if nargout > 1  s = diag(s(1:r, 1:r)).^2;  ratio = s/sum(s);end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -