📄 macro-assembler-arm.cc.svn-base
字号:
}void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); if (flag == CALL_FUNCTION) { Call(code); } else { ASSERT(flag == JUMP_FUNCTION); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done);}void MacroAssembler::InvokeCode(Handle<Code> code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, code, no_reg, &done, flag); if (flag == CALL_FUNCTION) { Call(code, rmode); } else { Jump(code, rmode); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done);}void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual, InvokeFlag flag) { // Contract with called JS functions requires that function is passed in r1. ASSERT(fun.is(r1)); Register expected_reg = r2; Register code_reg = r3; ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); ldr(expected_reg, FieldMemOperand(code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); ldr(code_reg, MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag)); add(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag);}void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); str(reg, MemOperand(ip)); } }}void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); ldr(reg, MemOperand(ip)); } }}void MacroAssembler::CopyRegistersFromMemoryToStack(Register base, RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the memory location to the stack and adjust base. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); ldr(ip, MemOperand(ip)); str(ip, MemOperand(base, 4, NegPreIndex)); } }}void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); ldr(scratch, MemOperand(base, 4, PostIndex)); str(scratch, MemOperand(ip)); } }}void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code // The pc (return address) is passed in register lr. if (try_location == IN_JAVASCRIPT) { stm(db_w, sp, pp.bit() | fp.bit() | lr.bit()); if (type == TRY_CATCH_HANDLER) { mov(r3, Operand(StackHandler::TRY_CATCH)); } else { mov(r3, Operand(StackHandler::TRY_FINALLY)); } push(r3); // state mov(r3, Operand(ExternalReference(Top::k_handler_address))); ldr(r1, MemOperand(r3)); push(r1); // next sp str(sp, MemOperand(r3)); // chain handler mov(r0, Operand(Smi::FromInt(StackHandler::kCodeNotPresent))); // new TOS push(r0); } else { // Must preserve r0-r4, r5-r7 are available. ASSERT(try_location == IN_JS_ENTRY); // The parameter pointer is meaningless here and fp does not point to a JS // frame. So we save NULL for both pp and fp. We expect the code throwing an // exception to check fp before dereferencing it to restore the context. mov(pp, Operand(0)); // set pp to NULL mov(ip, Operand(0)); // to save a NULL fp stm(db_w, sp, pp.bit() | ip.bit() | lr.bit()); mov(r6, Operand(StackHandler::ENTRY)); push(r6); // state mov(r7, Operand(ExternalReference(Top::k_handler_address))); ldr(r6, MemOperand(r7)); push(r6); // next sp str(sp, MemOperand(r7)); // chain handler mov(r5, Operand(Smi::FromInt(StackHandler::kCodeNotPresent))); // new TOS push(r5); // flush TOS }}Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch, Label* miss) { // Make sure there's no overlap between scratch and the other // registers. ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 1; // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. while (object != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(object->IsJSGlobalObject() || !object->IsAccessCheckNeeded()); // Get the map of the current object. ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); cmp(scratch, Operand(Handle<Map>(object->map()))); // Branch on the result of the map check. b(ne, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalObject()) { CheckAccessGlobal(reg, scratch, miss); // Restore scratch register to be the map of the object. In the // new space case below, we load the prototype from the map in // the scratch register. ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); } reg = holder_reg; // from now the object is in holder_reg JSObject* prototype = JSObject::cast(object->GetPrototype()); if (Heap::InNewSpace(prototype)) { // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. ldr(reg, FieldMemOperand(scratch, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. mov(reg, Operand(Handle<JSObject>(prototype))); } // Go to the next object in the prototype chain. object = prototype; } // Check the holder map. ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); cmp(scratch, Operand(Handle<Map>(object->map()))); b(ne, miss); // Log the check depth. LOG(IntEvent("check-maps-depth", depth)); // Perform security check for access to the global object and return // the holder register. ASSERT(object == holder); ASSERT(object->IsJSGlobalObject() || !object->IsAccessCheckNeeded()); if (object->IsJSGlobalObject()) { CheckAccessGlobal(reg, scratch, miss); } return reg;}void MacroAssembler::CheckAccessGlobal(Register holder_reg, Register scratch, Label* miss) { ASSERT(!holder_reg.is(scratch)); // Load the security context. mov(scratch, Operand(Top::security_context_address())); ldr(scratch, MemOperand(scratch)); // In debug mode, make sure the security context is set. if (kDebug) { cmp(scratch, Operand(0)); Check(ne, "we should not have an empty security context"); } // Load the global object of the security context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; ldr(scratch, FieldMemOperand(scratch, offset)); // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. ldr(scratch, FieldMemOperand(scratch, JSGlobalObject::kSecurityTokenOffset)); ldr(ip, FieldMemOperand(holder_reg, JSGlobalObject::kSecurityTokenOffset)); cmp(scratch, Operand(ip)); b(ne, miss);}void MacroAssembler::CallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs Call(stub->GetCode(), RelocInfo::CODE_TARGET);}void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); if (argc > 1) add(sp, sp, Operand((argc - 1) * kPointerSize)); Ret();}void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // All parameters are on the stack. r0 has the return value after call. // Either the expected number of arguments is unknown, or the actual // number of arguments match the expectation. ASSERT(f->nargs < 0 || f->nargs == num_arguments); Runtime::FunctionId function_id = static_cast<Runtime::FunctionId>(f->stub_id); RuntimeStub stub(function_id, num_arguments); CallStub(&stub);}void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { CallRuntime(Runtime::FunctionForId(fid), num_arguments);}void MacroAssembler::TailCallRuntime(const ExternalReference& ext, int num_arguments) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); JumpToBuiltin(ext);}void MacroAssembler::JumpToBuiltin(const ExternalReference& builtin) {#if defined(__thumb__) // Thumb mode builtin. ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);#endif mov(r1, Operand(builtin)); CEntryStub stub; Jump(stub.GetCode(), RelocInfo::CODE_TARGET);}Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, bool* resolved) { // Contract with compiled functions is that the function is passed in r1. int builtins_offset = JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); ldr(r1, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset)); ldr(r1, FieldMemOperand(r1, builtins_offset)); return Builtins::GetCode(id, resolved);}void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags) { bool resolved; Handle<Code> code = ResolveBuiltin(id, &resolved); if (flags == CALL_JS) { Call(code, RelocInfo::CODE_TARGET); } else { ASSERT(flags == JUMP_JS); Jump(code, RelocInfo::CODE_TARGET); } if (!resolved) { const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(true); Unresolved entry = { pc_offset() - sizeof(Instr), flags, name }; unresolved_.Add(entry); }}void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { bool resolved; Handle<Code> code = ResolveBuiltin(id, &resolved); mov(target, Operand(code)); if (!resolved) { const char* name = Builtins::GetName(id); int argc = Builtins::GetArgumentsCount(id); uint32_t flags = Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | Bootstrapper::FixupFlagsIsPCRelative::encode(true); Unresolved entry = { pc_offset() - sizeof(Instr), flags, name }; unresolved_.Add(entry); }}void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg);}void MacroAssembler::Check(Condition cc, const char* msg) { Label L; b(cc, &L); Abort(msg); // will not return here bind(&L);}void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the aligment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast<intptr_t>(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());#ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); }#endif mov(r0, Operand(p0)); push(r0); mov(r0, Operand(Smi::FromInt(p1 - p0))); push(r0); CallRuntime(Runtime::kAbort, 2); // will not return here}} } // namespace v8::internal
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -