⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 scopes.cc.svn-base

📁 Google浏览器V8内核代码
💻 SVN-BASE
📖 第 1 页 / 共 3 页
字号:
           scope_calls_eval_ || scope_inside_with_)) {        // We must look up the variable at runtime, and we don't        // know anything else.        var = NonLocal(proxy->name());      } else {        // We must have a global variable.        ASSERT(global_scope != NULL);        var = new Variable(global_scope, proxy->name(),                           Variable::DYNAMIC, true, false);        // Ideally we simply rewrite these variables into property        // accesses. Unfortunately, we cannot do this here at the        // moment because then we can't differentiate between        // global variable ('x') and global property ('this.x') access.        // If 'x' doesn't exist, the former leads to an error, while the        // latter returns undefined. Sigh...        // var->rewrite_ = new Property(new Literal(env_->global()),        //                              new Literal(proxy->name()));      }    }  }  proxy->BindTo(var);}void Scope::ResolveVariablesRecursively(Scope* global_scope) {  ASSERT(global_scope == NULL || global_scope->is_global_scope());  // Resolve unresolved variables for this scope.  for (int i = 0; i < unresolved_.length(); i++) {    ResolveVariable(global_scope, unresolved_[i]);  }  // Resolve unresolved variables for inner scopes.  for (int i = 0; i < inner_scopes_.length(); i++) {    inner_scopes_[i]->ResolveVariablesRecursively(global_scope);  }}bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval) {  if (outer_scope_calls_eval) {    outer_scope_calls_eval_ = true;  }  bool b = scope_calls_eval_ || outer_scope_calls_eval_;  for (int i = 0; i < inner_scopes_.length(); i++) {    Scope* inner_scope = inner_scopes_[i];    if (inner_scope->PropagateScopeInfo(b)) {      inner_scope_calls_eval_ = true;    }    if (inner_scope->force_eager_compilation_) {      force_eager_compilation_ = true;    }  }  return scope_calls_eval_ || inner_scope_calls_eval_;}bool Scope::MustAllocate(Variable* var) {  // Give var a read/write use if there is a chance it might be  // accessed via an eval() call, or if it is a global variable.  // This is only possible if the variable has a visible name.  if ((var->is_this() || var->name()->length() > 0) &&      (var->is_accessed_from_inner_scope_ ||       scope_calls_eval_ || inner_scope_calls_eval_ ||       scope_contains_with_ || var->is_global())) {    var->var_uses()->RecordAccess(1);  }  return var->var_uses()->is_used();}bool Scope::MustAllocateInContext(Variable* var) {  // If var is accessed from an inner scope, or if there is a  // possibility that it might be accessed from the current or  // an inner scope (through an eval() call), it must be allocated  // in the context.  // Exceptions: Global variables and temporary variables must  // never be allocated in the (FixedArray part of the) context.  return    var->mode() != Variable::TEMPORARY &&    (var->is_accessed_from_inner_scope_ ||     scope_calls_eval_ || inner_scope_calls_eval_ ||     scope_contains_with_ || var->is_global());}bool Scope::HasArgumentsParameter() {  for (int i = 0; i < params_.length(); i++) {    if (params_[i]->name().is_identical_to(Factory::arguments_symbol()))      return true;  }  return false;}void Scope::AllocateStackSlot(Variable* var) {  var->rewrite_ = new Slot(var, Slot::LOCAL, num_stack_slots_++);}void Scope::AllocateHeapSlot(Variable* var) {  var->rewrite_ = new Slot(var, Slot::CONTEXT, num_heap_slots_++);}void Scope::AllocateParameterLocals() {  ASSERT(is_function_scope());  Variable* arguments = Lookup(Factory::arguments_symbol());  ASSERT(arguments != NULL);  // functions have 'arguments' declared implicitly  if (MustAllocate(arguments) && !HasArgumentsParameter()) {    // 'arguments' is used. Unless there is also a parameter called    // 'arguments', we must be conservative and access all parameters via    // the arguments object: The i'th parameter is rewritten into    // '.arguments[i]' (*). If we have a parameter named 'arguments', a    // (new) value is always assigned to it via the function    // invocation. Then 'arguments' denotes that specific parameter value    // and cannot be used to access the parameters, which is why we don't    // need to rewrite in that case.    //    // (*) Instead of having a parameter called 'arguments', we may have an    // assignment to 'arguments' in the function body, at some arbitrary    // point in time (possibly through an 'eval()' call!). After that    // assignment any re-write of parameters would be invalid (was bug    // 881452). Thus, we introduce a shadow '.arguments'    // variable which also points to the arguments object. For rewrites we    // use '.arguments' which remains valid even if we assign to    // 'arguments'. To summarize: If we need to rewrite, we allocate an    // 'arguments' object dynamically upon function invocation. The compiler    // introduces 2 local variables 'arguments' and '.arguments', both of    // which originally point to the arguments object that was    // allocated. All parameters are rewritten into property accesses via    // the '.arguments' variable. Thus, any changes to properties of    // 'arguments' are reflected in the variables and vice versa. If the    // 'arguments' variable is changed, '.arguments' still points to the    // correct arguments object and the rewrites still work.    // We are using 'arguments'. Tell the code generator that is needs to    // allocate the arguments object by setting 'arguments_'.    arguments_ = new VariableProxy(Factory::arguments_symbol(), false, false);    arguments_->BindTo(arguments);    // We also need the '.arguments' shadow variable. Declare it and create    // and bind the corresponding proxy. It's ok to declare it only now    // because it's a local variable that is allocated after the parameters    // have been allocated.    //    // Note: This is "almost" at temporary variable but we cannot use    // NewTemporary() because the mode needs to be INTERNAL since this    // variable may be allocated in the heap-allocated context (temporaries    // are never allocated in the context).    Variable* arguments_shadow =        new Variable(this, Factory::arguments_shadow_symbol(),                     Variable::INTERNAL, true, false);    arguments_shadow_ =        new VariableProxy(Factory::arguments_shadow_symbol(), false, false);    arguments_shadow_->BindTo(arguments_shadow);    temps_.Add(arguments_shadow);    // Allocate the parameters by rewriting them into '.arguments[i]' accesses.    for (int i = 0; i < params_.length(); i++) {      Variable* var = params_[i];      ASSERT(var->scope() == this);      if (MustAllocate(var)) {        if (MustAllocateInContext(var)) {          // It is ok to set this only now, because arguments is a local          // variable that is allocated after the parameters have been          // allocated.          arguments_shadow->is_accessed_from_inner_scope_ = true;        }        var->rewrite_ =          new Property(arguments_shadow_,                       new Literal(Handle<Object>(Smi::FromInt(i))),                       RelocInfo::kNoPosition);        arguments_shadow->var_uses()->RecordUses(var->var_uses());      }    }  } else {    // The arguments object is not used, so we can access parameters directly.    // The same parameter may occur multiple times in the parameters_ list.    // If it does, and if it is not copied into the context object, it must    // receive the highest parameter index for that parameter; thus iteration    // order is relevant!    for (int i = 0; i < params_.length(); i++) {      Variable* var = params_[i];      ASSERT(var->scope() == this);      if (MustAllocate(var)) {        if (MustAllocateInContext(var)) {          ASSERT(var->rewrite_ == NULL ||                 (var->slot() != NULL && var->slot()->type() == Slot::CONTEXT));          if (var->rewrite_ == NULL) {            // Only set the heap allocation if the parameter has not            // been allocated yet.            AllocateHeapSlot(var);          }        } else {          ASSERT(var->rewrite_ == NULL ||                 (var->slot() != NULL &&                  var->slot()->type() == Slot::PARAMETER));          // Set the parameter index always, even if the parameter          // was seen before! (We need to access the actual parameter          // supplied for the last occurrence of a multiply declared          // parameter.)          var->rewrite_ = new Slot(var, Slot::PARAMETER, i);        }      }    }  }}void Scope::AllocateNonParameterLocal(Variable* var) {  ASSERT(var->scope() == this);  ASSERT(var->rewrite_ == NULL ||         (!var->IsVariable(Factory::result_symbol())) ||         (var->slot() == NULL || var->slot()->type() != Slot::LOCAL));  if (MustAllocate(var) && var->rewrite_ == NULL) {    if (MustAllocateInContext(var)) {      AllocateHeapSlot(var);    } else {      AllocateStackSlot(var);    }  }}void Scope::AllocateNonParameterLocals() {  // Each variable occurs exactly once in the locals_ list; all  // variables that have no rewrite yet are non-parameter locals.  // Sort them according to use such that the locals with more uses  // get allocated first.  if (FLAG_usage_computation) {    // This is currently not implemented.  }  for (int i = 0; i < temps_.length(); i++) {    AllocateNonParameterLocal(temps_[i]);  }  for (LocalsMap::Entry* p = locals_.Start(); p != NULL; p = locals_.Next(p)) {    Variable* var = reinterpret_cast<Variable*>(p->value);    AllocateNonParameterLocal(var);  }  // Note: For now, function_ must be allocated at the very end.  If  // it gets allocated in the context, it must be the last slot in the  // context, because of the current ScopeInfo implementation (see  // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).  if (function_ != NULL) {    AllocateNonParameterLocal(function_);  }}void Scope::AllocateVariablesRecursively() {  // The number of slots required for variables.  num_stack_slots_ = 0;  num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;  // Allocate variables for inner scopes.  for (int i = 0; i < inner_scopes_.length(); i++) {    inner_scopes_[i]->AllocateVariablesRecursively();  }  // Allocate variables for this scope.  // Parameters must be allocated first, if any.  if (is_function_scope()) AllocateParameterLocals();  AllocateNonParameterLocals();  // Allocate context if necessary.  bool must_have_local_context = false;  if (scope_calls_eval_ || scope_contains_with_) {    // The context for the eval() call or 'with' statement in this scope.    // Unless we are in the global or an eval scope, we need a local    // context even if we didn't statically allocate any locals in it,    // and the compiler will access the context variable. If we are    // not in an inner scope, the scope is provided from the outside.    must_have_local_context = is_function_scope();  }  // If we didn't allocate any locals in the local context, then we only  // need the minimal number of slots if we must have a local context.  if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS &&      !must_have_local_context) {    num_heap_slots_ = 0;  }  // Allocation done.  ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);}} }  // namespace v8::internal

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -