⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 generator.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    Generator.java *    Copyright (C) 2000 Gabi Schmidberger * *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */package weka.datagenerators;import java.lang.Exception;import java.io.FileOutputStream;import java.io.PrintWriter;import java.io.Serializable;import java.util.Enumeration;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import weka.core.Attribute;import weka.core.FastVector;/**  * Abstract class for data generators. * * ------------------------------------------------------------------- <p> * * General options are: <p> * * -r string <br> * Name of the relation of the generated dataset. <br> * (default = name built using name of used generator and options) <p> * * -a num <br> * Number of attributes. (default = 10) <p> * * -c num <br> * Number of classes. (default = 2) <p> * * -n num <br> * Number of examples. (default = 100) <p> * * -o filename<br> * writes the generated dataset to the given file using ARFF-Format. * (default = stdout). *  * ------------------------------------------------------------------- <p> * * Example usage as the main of a datagenerator called RandomGenerator: * <code> <pre> * public static void main(String [] args) { *   try { *     DataGenerator.makeData(new RandomGenerator(), argv); *   } catch (Exception e) { *     System.err.println(e.getMessage()); *   } * } * </pre> </code>  * <p> * * ------------------------------------------------------------------ <p> * * * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public abstract class Generator implements Serializable {  /** @serial Debugging mode */  private boolean m_Debug = false;  /** @serial The format for the generated dataset */  private Instances m_Format = null;  /** @serial Relation name the dataset should have */  private String m_RelationName = "";  /** @serial Number of attribute the dataset should have */  private int m_NumAttributes = 10;  /** @serial Number of Classes the dataset should have */  private int m_NumClasses = 2;  /** @serial Number of instances*/  private int m_NumExamples = 100;  /** @serial Number of instances that should be produced into the dataset     * this number is by default m_NumExamples,    * but can be reset by the generator     */   private int m_NumExamplesAct = 0;  /** @serial PrintWriter */  private PrintWriter m_Output = null;  /**   * Initializes the format for the dataset produced.    * Must be called before the generateExample or generateExamples   * methods are used.   *   * @return the format for the dataset    * @exception Exception if the generating of the format failed   */  abstract Instances defineDataFormat() throws Exception;   /**   * Generates one example of the dataset.    *   * @return the generated example   * @exception Exception if the format of the dataset is not yet defined   * @exception Exception if the generator only works with generateExamples   * which means in non single mode   */  abstract Instance generateExample() throws Exception;  /**   * Generates all examples of the dataset.    *   * @return the generated dataset   * @exception Exception if the format of the dataset is not yet defined   * @exception Exception if the generator only works with generateExample,   * which means in single mode   */  abstract Instances generateExamples() throws Exception;  /**   * Generates a comment string that documentats the data generator.   * By default this string is added at the end of theproduces output   * as ARFF file type.   *    * @return string contains info about the generated rules   * @exception Exception if the generating of the documentaion fails   */  abstract String generateFinished () throws Exception;  /**   * Return if single mode is set for the given data generator   * mode depends on option setting and or generator type.   *    * @return single mode flag   * @exception Exception if mode is not set yet   */  abstract boolean getSingleModeFlag () throws Exception;  /**   * Sets the debug flag.   * @param debug the new debug flag   */  public void setDebug(boolean debug) {     m_Debug = debug;  }  /**   * Gets the debug flag.   * @return the debug flag    */  public boolean getDebug() { return m_Debug; }  /**   * Sets the relation name the dataset should have.   * @param relationName the new relation name   */  public void setRelationName(String relationName) {    if (relationName.length() == 0) {      // build relationname       StringBuffer name = new StringBuffer(this.getClass().getName());      String [] options = getGenericOptions();      for (int i = 0; i < options.length; i++) {	name = name.append(options[i].trim());      }      if (this instanceof OptionHandler) {        options = ((OptionHandler)this).getOptions();        for (int i = 0; i < options.length; i++) {	  name = name.append(options[i].trim());        }      }      m_RelationName = name.toString();    }     else      m_RelationName = relationName;  }  /**   * Gets the relation name the dataset should have.   * @return the relation name the dataset should have   */  public String getRelationName() { return m_RelationName; }  /**   * Sets the number of classes the dataset should have.   * @param numClasses the new number of classes   */  public void setNumClasses(int numClasses) { m_NumClasses = numClasses; }  /**   * Gets the number of classes the dataset should have.   * @return the number of classes the dataset should have   */  public int getNumClasses() { return m_NumClasses; }  /**   * Sets the number of examples, given by option.   * @param numExamples the new number of examples   */  public void setNumExamples(int numExamples) { m_NumExamples = numExamples; }  /**   * Gets the number of examples, given by option.   * @return the number of examples, given by option    */  public int getNumExamples() { return m_NumExamples; }  /**   * Sets the number of attributes the dataset should have.   * @param numAttributes the new number of attributes   */  public void setNumAttributes(int numAttributes) {    m_NumAttributes = numAttributes;  }  /**   * Gets the number of attributes that should be produced.   * @return the number of attributes that should be produced   */  public int getNumAttributes() { return m_NumAttributes; }  /**   * Sets the number of examples the dataset should have.   * @param numExamplesAct the new number of examples   */  public void setNumExamplesAct(int numExamplesAct) {     m_NumExamplesAct = numExamplesAct;  }  /**   * Gets the number of examples the dataset should have.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -