📄 affineprobmetric.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * AffineProbMetric.java * Copyright (C) 2002-3 Mikhail Bilenko * */package weka.deduping.metrics;import java.text.*;import java.io.*;import java.util.*;import weka.core.*;import weka.deduping.*; /** AffineProbMetric class implements a probabilistic model string edit distance with affine-cost gaps * * @author Mikhail Bilenko<mbilenko@cs.utexas.edu> * @version 1.1 **/public class AffineProbMetric extends StringMetric implements LearnableStringMetric, Serializable, OptionHandler { /* Current probabilities, log-probabilities and accumulated expectations for each edit operation */ protected double [][] m_editopProbs; protected double [][] m_editopLogProbs; protected double [][] m_editopOccs; /** Parameters for the generative model */ protected double m_noopProb, m_noopLogProb, m_noopOccs; // matching protected double m_endAtSubProb, m_endAtSubLogProb, m_endAtSubOccs; // ending the alignment at M state protected double m_endAtGapProb, m_endAtGapLogProb, m_endAtGapOccs; // ending the alignment at D/I states protected double m_gapStartProb, m_gapStartLogProb, m_gapStartOccs; // starting a gap in the alignment protected double m_gapExtendProb, m_gapExtendLogProb, m_gapExtendOccs; // extending a gap in the alignment protected double m_gapEndProb, m_gapEndLogProb, m_gapEndOccs; // ending a gap in the alignment protected double m_subProb, m_subLogProb, m_subOccs; // continuing to match/substitute in state M /** parameters for the additive model, obtained from log-probs to speed up computations in the "testing" phase after weights have been learned */ protected double [][] m_editopCosts; protected double m_noopCost; protected double m_endAtSubCost; protected double m_endAtGapCost; protected double m_gapStartCost; protected double m_gapExtendCost; protected double m_gapEndCost; protected double m_subCost; /** true if we are using a generative model for distance in the "testing" phase after learning the parameters By default we want to use the additive model that uses probabilities converted to costs*/ protected boolean m_useGenerativeModel = false; /** Maximum number of iterations for training the model; usually converge in <10 iterations */ protected int m_numIterations = 20; /** Normalization of edit distance by string length; equivalent to using the posterior probability in the generative model*/ protected boolean m_normalized = true; /** Minimal value of a probability parameter. Particularly important when training sets are small to prevent zero probabilities. */ protected double m_clampProb = 1e-5; /** A handy constant for insertions/deletions, we treat them as substitution with a null character */ protected final char blank = 0; /** TODO: given a corpus, populate this array with the characters that are actually encountered */ protected char [] m_usedChars = {'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p', 'q','r','s','t','u','v','w','x','y','z',' ','!','\"','#','$','%', '&','\'','(',')','*','+',',','-','.','/','0','1','2','3','4','5','6', '7','8','9',':',';','<','=','>','?','@','[','\\',']','^','_','`','{', '|','}','~'}; /** We can have different ways of converting from distance to similarity */ public static final int CONVERSION_LAPLACIAN = 1; public static final int CONVERSION_UNIT = 2; public static final int CONVERSION_EXPONENTIAL = 4; public static final Tag[] TAGS_CONVERSION = { new Tag(CONVERSION_UNIT, "similarity = 1-distance"), new Tag(CONVERSION_LAPLACIAN, "similarity=1/(1+distance)"), new Tag(CONVERSION_EXPONENTIAL, "similarity=exp(-distance)") }; /** The method of converting, by default laplacian */ protected int m_conversionType = CONVERSION_EXPONENTIAL; protected boolean m_verbose = false; /** * set up an instance of AffineProbMetric */ public AffineProbMetric () { m_editopProbs = new double[128][128]; m_editopLogProbs = new double[128][128]; m_editopOccs = new double[128][128]; m_editopCosts = new double[128][128]; initProbs(); normalizeEmissionProbs(); normalizeTransitionProbs(); updateLogProbs(); initCosts(); } /** * Calculate the forward matrices * @param _s1 first string * @param _s2 second string * @return m_endAtSubProb*matrix[l1][l2][0] + m_endAtGapProb(matrix[l1][l2][1] + * matrix[l1][l2][2]) extendains the distance value */ protected double[][][] forward (String _s1, String _s2) { char [] s1 = _s1.toCharArray(); char [] s2 = _s2.toCharArray(); int l1 = s1.length, l2 = s2.length; double matrix[][][] = new double[l1 + 1][l2 + 1][3]; double tmpLog, subProb, tmpLog1; // initialization for (int i = 0; i <=l1; i++) matrix[i][0][0] = matrix[i][0][1] = matrix[i][0][2] = Double.NEGATIVE_INFINITY; for (int j = 1; j <=l2; j++) matrix[0][j][0] = matrix[0][j][1] = matrix[0][j][2] = Double.NEGATIVE_INFINITY; matrix[0][0][0] = 0; // border rows for (int j = 1; j <=l2; j++) { tmpLog = logSum(m_gapExtendLogProb + matrix[0][j-1][2], m_gapStartLogProb + matrix[0][j-1][0]); matrix[0][j][2] = m_editopLogProbs[blank][s2[j-1]] + tmpLog; } for (int i = 1; i <= l1; i++) { tmpLog = logSum(m_gapStartLogProb + matrix[i-1][0][0], m_gapExtendLogProb + matrix[i-1][0][1]); matrix[i][0][1] = m_editopLogProbs[blank][s1[i-1]] + tmpLog; } // the rest for (int i = 1; i <= l1; i++) { for (int j = 1; j <= l2; j++) { tmpLog = logSum(m_gapStartLogProb + matrix[i-1][j][0], m_gapExtendLogProb + matrix[i-1][j][1]); matrix[i][j][1] = m_editopLogProbs[blank][s1[i-1]] + tmpLog; tmpLog = logSum(m_gapExtendLogProb + matrix[i][j-1][2], m_gapStartLogProb + matrix[i][j-1][0]); matrix[i][j][2] = m_editopLogProbs[blank][s2[j-1]] + tmpLog; subProb = ((s1[i-1] == s2[j-1]) ? m_noopLogProb : m_editopLogProbs[s1[i-1]][s2[j-1]]); tmpLog1 = logSum(m_subLogProb + matrix[i-1][j-1][0], m_gapEndLogProb + matrix[i-1][j-1][2]); tmpLog = logSum(m_gapEndLogProb + matrix[i-1][j-1][1], tmpLog1); matrix[i][j][0] = subProb + tmpLog; } } return matrix; } /** * Calculate the backward matrices * @param _s1 first string * @param _s2 second string * @return matrix[0][0][0] extendains the distance value */ protected double[][][] backward (String _s1, String _s2) { char [] s1 = _s1.toCharArray(); char [] s2 = _s2.toCharArray(); int l1 = s1.length, l2 = s2.length; double matrix[][][] = new double[l1 + 1][l2 + 1][3]; double sub_pairProb, del_charProb, ins_charProb, tmpLog; // initialize for (int i = 0; i <=l1; i++) matrix[i][l2][0] = matrix[i][l2][1] = matrix[i][l2][2] = Double.NEGATIVE_INFINITY; for (int j = 0; j <=l2; j++) matrix[l1][j][0] = matrix[l1][j][1] = matrix[l1][j][2] = Double.NEGATIVE_INFINITY; matrix[l1][l2][0] = m_endAtSubLogProb; matrix[l1][l2][1] = matrix[l1][l2][2] = m_endAtGapLogProb; // border rows for (int i = l1-1; i >= 0; i--) { matrix[i][l2][0] = m_editopLogProbs[blank][s1[i]] + m_gapStartLogProb + matrix[i+1][l2][1]; matrix[i][l2][1] = m_editopLogProbs[blank][s1[i]] + m_gapExtendLogProb + matrix[i+1][l2][1]; } for (int j = l2-1; j >= 0; j--) { matrix[l1][j][0] = m_editopLogProbs[blank][s2[j]] + m_gapStartLogProb + matrix[l1][j+1][2]; matrix[l1][j][2] = m_editopLogProbs[blank][s2[j]] + m_gapExtendLogProb + matrix[l1][j+1][2]; } // fill the rest of the matrix for (int i = l1-1; i >= 0; i--) { for (int j = l2-1; j >= 0; j--) { ins_charProb = m_editopLogProbs[blank][s1[i]]; del_charProb = m_editopLogProbs[blank][s2[j]]; sub_pairProb = ((s1[i] == s2[j]) ? m_noopLogProb : m_editopLogProbs[s1[i]][s2[j]]); matrix[i][j][1] = logSum(ins_charProb + m_gapExtendLogProb + matrix[i+1][j][1], sub_pairProb + m_gapEndLogProb + matrix[i+1][j+1][0]); matrix[i][j][2] = logSum(del_charProb + m_gapExtendLogProb + matrix[i][j+1][2], sub_pairProb + m_gapEndLogProb + matrix[i+1][j+1][0]); tmpLog = logSum(ins_charProb + matrix[i+1][j][1], del_charProb + matrix[i][j+1][2]); matrix[i][j][0] = logSum(sub_pairProb + m_subLogProb + matrix[i+1][j+1][0], m_gapStartLogProb + tmpLog); } } return matrix; } /** * print out the three matrices */ public void printMatrices(String s1, String s2) { double[][][] forward = forward(s1, s2); double[][][] backward = backward(s1, s2); int l1 = s1.length(), l2 = s2.length(); double totalForward = logSum(m_endAtSubLogProb + forward[l1][l2][0], m_endAtGapLogProb + forward[l1][l2][1]); totalForward = logSum(totalForward, m_endAtGapLogProb + forward[l1][l2][2]); System.out.println("\nB:" + backward[0][0][0] + "\tF:" + totalForward); System.out.println("\n***FORWARD***\nSUBSTITUTION:"); printAlignmentMatrix(s1, s2, 0, forward); System.out.println("\n\nDELETION:"); printAlignmentMatrix(s1, s2, 1, forward); System.out.println("\n\nINSERTION:"); printAlignmentMatrix(s1, s2, 2, forward); System.out.println("\n***BACKWARD***\nSUBSTITUTION:"); printAlignmentMatrix(s1, s2, 0, backward); System.out.println("\n\nDELETION:"); printAlignmentMatrix(s1, s2, 1, backward); System.out.println("\n\nINSERTION:"); printAlignmentMatrix(s1, s2, 2, backward); } public void printAlignmentMatrix(String _s1, String _s2, int idx, double[][][] matrix) { DecimalFormat fmt = new DecimalFormat ("0.000"); char[] s1 = _s1.toCharArray(); char[] s2 = _s1.toCharArray(); System.out.print('\t'); for (int i = 0; i < s2.length; i++) { System.out.print("\t" + s2[i]); } System.out.println(); for (int i = 0; i < matrix.length; i++) { if (i > 0) System.out.print(s1[i-1] + "\t"); else System.out.print("\t"); for (int j = 0; j < matrix[i].length; j++) { System.out.print(fmt.format(matrix[i][j][idx]) + "\t"); } System.out.println(); } } /** * print out some data in case things go wrong */ protected void printOpProbs() { System.out.println("extend_gap_op.prob=" + m_gapExtendProb + " end_gap_op.prob=" + m_gapEndProb + " subst_op.prob=" + m_subProb); } /** * Train the distance parameters using provided examples using EM * @param matched_pairs Each member is a String[] extendaining two matching fields * @param matched_pairs Each member is a String[] extendaining two non-matching fields */ public void trainMetric (ArrayList pairList) throws Exception { initProbs(); recordCosts(0); // convert the training data to lower case for (int j = 0; j < pairList.size(); j++) { StringPair pair = (StringPair)pairList.get(j); pair.str1 = pair.str1.toLowerCase(); pair.str2 = pair.str2.toLowerCase(); } try { // dump out the current probablities PrintWriter out = new PrintWriter(new FileWriter("/tmp/probs1")); double totalProb = 0; double prevTotalProb = -Double.MAX_VALUE; for (int i = 1; i <= m_numIterations && Math.abs(totalProb - prevTotalProb) > 1; i++) { resetOccurrences(); out.println(i + "\t" + m_endAtSubProb + "\t" + m_subProb + "\t" + m_gapStartProb + "\t" + m_endAtGapProb + "\t" + m_gapEndProb + "\t" + m_gapExtendProb + "\t" + m_noopProb); // go through positives prevTotalProb = totalProb; totalProb = 0; for (int j = 0; j < pairList.size(); j++) { StringPair pair = (StringPair)pairList.get(j); if (pair.positive) { totalProb += expectationStep (pair.str1, pair.str2, 1, true); } } // go through negatives - TODO - discriminative training // for (int j = 0; j < negExamples.length; j++) // expectationStep (negExamples[j][1], negExamples[j][0], 1, false); System.out.println(i + ". Total likelihood=" + totalProb + "; prev=" + prevTotalProb); System.out.println("************ Accumulated expectations ******************** "); System.out.println("End_s=" + m_endAtSubOccs + "\tSub=" + m_subOccs + "\tStGap=" + m_gapStartOccs + "\nEnd_g=" + m_endAtGapOccs + "\tEndGap=" + m_gapEndOccs + " ContGap=" + m_gapExtendOccs + "\nNoop=" + m_noopOccs); System.out.println("********************************"); maximizationStep (); } out.close(); } catch (Exception e) { e.printStackTrace();} initCosts(); recordCosts(1); } /** * Expectation part of the EM algorithm * accumulates expectations of editop probabilities over example pairs * Expectation is calculated based on two examples which are either duplicates (pos=true) * or non-duplicates (pos=false). Lambda is a weighting parameter, 1 by default. * @param _s1 first string * @param _s2 second string * @param lambda learning rate parameter, 1 by default * @param pos_training true if strings are matched, false if mismatched */ protected double expectationStep (String _s1, String _s2, int lambda, boolean pos_training) { int l1 = _s1.length(), l2 = _s2.length(); if (l1 == 0 || l2 == 0) { return 0; } char [] s1 = _s1.toCharArray(); char [] s2 = _s2.toCharArray(); double fMatrix[][][] = forward (_s1, _s2); double bMatrix[][][] = backward (_s1, _s2); double stringProb = bMatrix[0][0][0];// NB: b[0][0][0]must be equal to endAtSub*f[l1][l2][0] + endAtGap*(f[l1][l2][1]+f[l1][l2][2]); uncomment below for sanity check// double totalForward = logSum(m_endAtSubLogProb + fMatrix[l1][l2][0], m_endAtSubLogProb + fMatrix[l1][l2][1]);// totalForward = logSum(totalForward, m_endAtSubLogProb + fMatrix[l1][l2][2]);// System.out.println("b:" + bMatrix[0][0][0] + "\tf:" + totalForward); double occsSubst, occsStartGap_1, occsStartGap_2, occsExtendGap_1, occsExtendGap_2; double occsEndGap_1, occsEndGap_2; double sub_pairProb, ins_charProb, del_charProb; char s1_i, s2_j; if (stringProb == 0.0) { System.out.println("TROUBLE!!!! s1=" + _s1 + " s2=" + _s2); printMatrices(_s1,_s2); return 0; } m_endAtSubOccs += lambda; m_endAtGapOccs += 2*lambda; for (int i = 1; i < l1; i++) { for (int j = 1; j< l2; j++) { s1_i = s1[i-1]; s2_j = s2[j-1]; if (s1_i == s2_j) { sub_pairProb = m_noopLogProb; } else {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -