📄 classifierinstancemetric.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * ClassifierInstanceMetric.java * Copyright (C) 2003 Mikhail Bilenko * */package weka.deduping.metrics;import java.util.ArrayList;import java.util.Vector;import java.util.Enumeration;import java.util.Date;import java.text.SimpleDateFormat;import java.io.*;import weka.deduping.*;import weka.core.*;import weka.classifiers.DistributionClassifier;import weka.classifiers.sparse.SVMlight;import weka.classifiers.Evaluation;/** * ClassifierInstanceMetric class employs a classifier that uses * values returned by various StringMetric's on individual fields * as features and outputs a confidence value that corresponds to * similarity between records * * @author Mikhail Bilenko (mbilenko@cs.utexas.edu) * @version $Revision: 1.5 $ */public class ClassifierInstanceMetric extends InstanceMetric implements OptionHandler, Serializable { /** Classifier that is used for estimating similarity between records */ protected DistributionClassifier m_classifier = new SVMlight(); /** A selector object that will create training sets */ PairwiseSelector m_selector = new PairwiseSelector(); /** The desired number of training pairs */ protected int m_numPosPairs = 200; protected int m_numNegPairs = 200; /** StringMetric prototype that are to be used on each field */ protected StringMetric [] m_stringMetrics = new StringMetric[0]; /** The actual array of metrics */ protected StringMetric [][] m_fieldMetrics = null; /** A temporary dataset that contains diff-instances for training the classifier */ protected Instances m_diffInstances = null; /** A default constructor */ public ClassifierInstanceMetric() { } /** * Generates a new ClassifierInstanceMetric that computes * similarity between records using the specified attributes. Has to * initialize all metric fields with default string metrics * * @param attrIdxs the indeces of attributes that the metric will use * @exception Exception if the distance metric has not been * generated successfully. */ public void buildInstanceMetric(int[] attrIdxs) throws Exception { // initialize the array of metrics for each attribute m_attrIdxs = attrIdxs; m_fieldMetrics = new StringMetric[m_stringMetrics.length][m_attrIdxs.length]; for (int i = 0; i < m_stringMetrics.length; i++) { for (int j = 0; j < m_attrIdxs.length; j++) { m_fieldMetrics[i][j] = (StringMetric) m_stringMetrics[i].clone(); } } } /** * Create a new metric for operating on specified instances * @param trainData instances for training the metric * @param testData instances that will be used for testing */ public void trainInstanceMetric(Instances trainData, Instances testData) throws Exception { m_selector.initSelector(trainData); // if we have data-dependent or trainable metrics // (e.g. vector-space or learnable ED), build them with available // test/train data ArrayList [] attrStringLists = null; for (int i = 0; i < m_stringMetrics.length; i++) { if (m_stringMetrics[i] instanceof DataDependentStringMetric) { // populate the list of strings for each attribute now that we need them if (attrStringLists == null) { attrStringLists = new ArrayList[m_attrIdxs.length]; for (int j = 0; j < m_attrIdxs.length; j++) { attrStringLists[j] = getStringList(trainData, testData, m_attrIdxs[j]); } } // initialize the data-dependent metric for each attribute for (int j = 0; j < m_attrIdxs.length; j++) { ((DataDependentStringMetric)m_fieldMetrics[i][j]).buildMetric(attrStringLists[j]); } } // if the metric is learnable, train it if (m_stringMetrics[i] instanceof LearnableStringMetric) { for (int j = 0; j < m_attrIdxs.length; j++) { ArrayList strPairList = m_selector.getStringPairList(trainData, m_attrIdxs[j], m_numPosPairs, m_numNegPairs, m_fieldMetrics[i][j]); ((LearnableStringMetric)m_fieldMetrics[i][j]).trainMetric(strPairList); } } } // train the classifier m_diffInstances = m_selector.getInstances(m_attrIdxs, m_fieldMetrics, m_numPosPairs, m_numNegPairs); // get the stats on actual training data AttributeStats classStats = m_diffInstances.attributeStats(m_diffInstances.classIndex()); m_numActualPosPairs = classStats.nominalCounts[0]; m_numActualNegPairs = classStats.nominalCounts[1]; // SANITY CHECK - CROSS-VALIDATION if (false) { // dump diff-instances into a temporary file try { File diffDir = new File("/tmp/diff"); diffDir.mkdir(); String diffName = trainData.relationName() + "." + Utils.removeSubstring(m_fieldMetrics[0].getClass().getName(), "weka.deduping.metrics."); m_diffInstances.setRelationName(diffName); PrintWriter writer = new PrintWriter(new BufferedOutputStream (new FileOutputStream(diffDir.getPath() + "/" + diffName + ".arff"))); writer.println(m_diffInstances.toString()); writer.close(); // Do a sanity check - dump out the diffInstances, and // evaluation classification with an SVM. long trainTimeStart = System.currentTimeMillis(); SVMlight classifier = new SVMlight(); Evaluation eval = new Evaluation(m_diffInstances); eval.crossValidateModel(classifier, m_diffInstances, 5); writer = new PrintWriter(new BufferedOutputStream (new FileOutputStream(diffDir.getPath() + "/" + diffName + ".dat", true))); writer.println(eval.pctCorrect()); writer.close(); System.out.println("** Record Sanity:" + (System.currentTimeMillis() - trainTimeStart) + " ms; " + eval.pctCorrect() + "% correct\t" + eval.numFalseNegatives(0) + "(" + eval.falseNegativeRate(0) + "%) false negatives\t" + eval.numFalsePositives(0) + "(" + eval.falsePositiveRate(0) + "%) false positives\t"); } catch (Exception e) { e.printStackTrace(); System.out.println(e.toString()); } } // END SANITY CHECK System.out.println(getTimestamp() + ": Building " + m_classifier.getClass().getName()); m_classifier.buildClassifier(m_diffInstances); System.out.println(getTimestamp() + ": Done building " + m_classifier.getClass().getName()); } /** An internal method for creating a list of strings for a * particular attribute from two sets of instances: trianing and * test data * @param trainData a dataset of records in the training fold * @param testData a dataset of records in the testing fold * @param attrIdx the index of the attribute for which strings are to be collected * @return a list of strings that occur for this attribute; duplicates are allowed */ protected ArrayList getStringList(Instances trainData, Instances testData, int attrIdx) { ArrayList stringList = new ArrayList(); // go through the training data and get all string values for that attribute if (trainData != null) { for (int i = 0; i < trainData.numInstances(); i++) { Instance instance = trainData.instance(i); String value = instance.stringValue(attrIdx); stringList.add(value); } } // go through the test data and get all string values for that attribute for (int i = 0; i < testData.numInstances(); i++) { Instance instance = testData.instance(i); String value = instance.stringValue(attrIdx); stringList.add(value); } return stringList; } /** * Returns distance between two records * @param instance1 First record. * @param instance2 Second record. * @exception Exception if distance could not be calculated. */ public double distance(Instance instance1, Instance instance2) throws Exception { // go through all metrics collecting the values of distances for different attributes double[] distances = new double[m_attrIdxs.length * m_stringMetrics.length + 1]; int counter = 0; for (int i = 0; i < m_attrIdxs.length; i++) { String str1 = instance1.stringValue(m_attrIdxs[i]); String str2 = instance2.stringValue(m_attrIdxs[i]); for (int j = 0; j < m_stringMetrics.length; j++) { if (m_stringMetrics[j].isDistanceBased()) { distances[counter++] = m_fieldMetrics[j][i].distance(str1, str2); } else { distances[counter++] = m_fieldMetrics[j][i].similarity(str1, str2); } } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -