📄 readme
字号:
You can simply run the following command (D: datafile, C: constraints file, N: num clusters, O: output file, K: position of class attribute [-1 => last attribute])java -classpath ./weka.jar weka.clusterers.MPCKMeans -D ../../Data/iris.arff -C ../../Data/iris.const.ascii -N 3 -O iris.assignments -K 1Notes: 1. Be careful about the -K option, because for some arff files the class attribute is at the front, while for the others it is at the end. If -K is not specified, MPC-KMeans assumes that the *last* attribute is the class variable.2. Add -V option if *no* transitive closure of constraints is desired. ------------------------------------------------------------------------------Description of all MPCKMeans options:java -classpath ./weka.jar weka.clusterers.MPCKMeans \ -D <data arff file, e.g., iris.arff> \ -C <constraints file, e.g., iris.constraints> \ -O <file were final cluster assignments are output, e.g., iris.assignments> \ -K <class index (unspecified => last attribute, -1 => no class attribute in data)> \ -X <not seedable if specified>\ -T <trainable, e.g., 4 (1=NONE, 2=EXTERNAL, 4=INTERNAL)> \ -M <metric, e.g., weka.core.metrics.WeightedEuclidean (WeightedEuclidean/WeightedDotP/KL)> \ -L <metriclearner, e.g., weka.clusterers.metriclearners.WEuclideanLearner (WEuclideanLearner/DotPGDLearner/KLGDLearner)> \ -G <regularizer, e.g., weka.clusterers.regularizers.Rayleigh (Rayleigh/L1)> \ -A <assigner, e.g., weka.clusterers.assigners.SimpleAssigner (SimpleAssigner/RandomAssigner/SortedAssigner/LPAssigner/RMNAssigner)> \ -I <initializer, e.g., weka.clusterers.initializers.WeightedFFNeighborhoodInit (WeightedFFNeighborhoodInit/RandomPerturbInitializer)> \ -U <use multiple metrics (one per class) if specified) -N <num clusters: by default, read from classes in datasets> \ -R <random number seed, e.g., 42> \ -l <logtermweight, e.g., 0.01> \ -r <regularizertermweight, e.g., 0.001> \ -m <weight of must-link weights, e.g., 1> \ -c <weight of cannot-link weights, e.g., 1> \ -i <maximum number of clustering iterations, e.g., 20000> \ -B <maximum number of blank iterations, e.g., 20> \ -V <don't take transitive closure of constraints if specified> \ -H <output file for dumping incoherence values in each iteration>Notes: 1. Only -D option is required, all others are optional. ------------------------------------------------------------------------------Sample run of MPCKMeans with all options:java -classpath ./weka.jar weka.clusterers.MPCKMeans \ -D ../../Data/iris.arff \ -C ../../Data/iris.const.ascii \ -O iris.assignments \ -K 1 \ -T 4 \ -M weka.core.metrics.WeightedEuclidean \ -L weka.clusterers.metriclearners.WEuclideanLearner \ -G weka.clusterers.regularizers.Rayleigh \ -A weka.clusterers.assigners.SimpleAssigner \ -I weka.clusterers.initializers.WeightedFFNeighborhoodInit \ -N 3 \ -R 42 \ -l 0.01 \ -r 0.001 \ -m 1 \ -c 1 \ -i 2000 \ -B 20 \ -H iris.incoherence \Notes: 1. Only change the -D, -C, -N, -O, -K options for different datasets,can leave everything else as specified in the options above. 2. If -V specified, *no* transitive closure is taken for the constraints.3. MPCK-Means is constrained by default. Use -X only if you want to turn constraint satisfaction off during the E-step.4. No need to give -N option if -K is specified.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -