⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻
字号:
You can simply run the following command (D: datafile, C: constraints file, N: num clusters, O: output file, K: position of class attribute [-1 => last attribute])java -classpath ./weka.jar weka.clusterers.MPCKMeans -D ../../Data/iris.arff -C ../../Data/iris.const.ascii -N 3 -O iris.assignments -K 1Notes: 1. Be careful about the -K option, because for some arff files the class attribute is at the front, while for the others it is at the end.  If -K is not specified, MPC-KMeans assumes that the *last* attribute is the class variable.2. Add -V option if *no* transitive closure of constraints is desired. ------------------------------------------------------------------------------Description of all MPCKMeans options:java -classpath ./weka.jar weka.clusterers.MPCKMeans \	-D <data arff file, e.g., iris.arff> \	-C <constraints file, e.g., iris.constraints> \	-O <file were final cluster assignments are output, e.g., iris.assignments> \	-K <class index (unspecified => last attribute, -1 => no class attribute in data)> \	-X <not seedable if specified>\	-T <trainable, e.g., 4 (1=NONE, 2=EXTERNAL, 4=INTERNAL)> \	-M <metric, e.g., weka.core.metrics.WeightedEuclidean (WeightedEuclidean/WeightedDotP/KL)> \	-L <metriclearner, e.g., weka.clusterers.metriclearners.WEuclideanLearner (WEuclideanLearner/DotPGDLearner/KLGDLearner)> \	-G <regularizer, e.g., weka.clusterers.regularizers.Rayleigh (Rayleigh/L1)> \	-A <assigner, e.g., weka.clusterers.assigners.SimpleAssigner (SimpleAssigner/RandomAssigner/SortedAssigner/LPAssigner/RMNAssigner)> \	-I <initializer, e.g., weka.clusterers.initializers.WeightedFFNeighborhoodInit (WeightedFFNeighborhoodInit/RandomPerturbInitializer)> \	-U <use multiple metrics (one per class) if specified)	-N <num clusters: by default, read from classes in datasets> \	-R <random number seed, e.g., 42> \	-l <logtermweight, e.g., 0.01> \	-r <regularizertermweight, e.g.,  0.001> \	-m <weight of must-link weights, e.g., 1> \	-c <weight of cannot-link weights, e.g., 1> \	-i <maximum number of clustering iterations, e.g., 20000> \	-B <maximum number of blank iterations, e.g., 20> \	-V <don't take transitive closure of constraints if specified> \	-H <output file for dumping incoherence values in each iteration>Notes: 1. Only -D option is required, all others are optional. ------------------------------------------------------------------------------Sample run of MPCKMeans with all options:java -classpath ./weka.jar weka.clusterers.MPCKMeans \	-D ../../Data/iris.arff \	-C ../../Data/iris.const.ascii \	-O iris.assignments \	-K 1 \	-T 4 \	-M weka.core.metrics.WeightedEuclidean \	-L weka.clusterers.metriclearners.WEuclideanLearner \	-G weka.clusterers.regularizers.Rayleigh \	-A weka.clusterers.assigners.SimpleAssigner \	-I weka.clusterers.initializers.WeightedFFNeighborhoodInit \	-N 3 \	-R 42 \	-l 0.01 \	-r 0.001 \	-m 1 \	-c 1 \	-i 2000 \	-B 20 \	-H iris.incoherence \Notes: 1. Only change the -D, -C, -N, -O, -K options for different datasets,can leave everything else as specified in the options above. 2. If -V specified, *no* transitive closure is taken for the constraints.3. MPCK-Means is constrained by default. Use -X only if you want to turn constraint satisfaction off during the E-step.4. No need to give -N option if -K is specified.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -