📄 mpckmeans.options
字号:
java weka.clusterers.MPCKMeans \ -D <data arff file, e.g., iris.arff> \ -C <constraints file, e.g., iris.constraints> \ -K <class index (unspecified => last attribute, -1 => no class attribute in data)> \ -S <seedable if specified>\ -T <trainable, e.g., 4 (1=NONE, 2=EXTERNAL, 4=INTERNAL)> \ -M <metric, e.g., weka.core.metrics.WeightedEuclidean (WeightedEuclidean/WeightedDotP/KL)> \ -L <metriclearner, e.g., weka.clusterers.metriclearners.WEuclideanLearner (WEuclideanLearner/DotPGDLearner/KLGDLearner)> \ -G <regularizer, e.g., weka.clusterers.regularizers.Rayleigh (Rayleigh/L1)> \ -A <assigner, e.g., weka.clusterers.assigners.SimpleAssigner (SimpleAssigner/RandomAssigner/SortedAssigner/LPAssigner/RMNAssigner)> \ -I <initializer, e.g., weka.clusterers.initializers.WeightedFFNeighborhoodInit (WeightedFFNeighborhoodInit/RandomPerturbInitializer)> \ -N <num clusters: by default, read from classes in datasets> \ -R <random number seed, e.g., 42> \ -l <logtermweight, e.g., 0.01> \ -r <regularizertermweiht, e.g., 0.001> \ -m <weight of must-link weights, e.g., 1> \ -c <weight of cannot-link weights, e.g., 1> \ -I <maximum number of clustering iterations, e.g., 20000> \ -B <maximum number of blank iterations, e.g., 20> \ -O <file were final cluster assignments are output, e.g., iris.assignments> \ -V <take transitive closure of constraints if specified> \Note: Only -D option is required, all others are optional
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -