⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mpckmeans.options

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 OPTIONS
字号:
java weka.clusterers.MPCKMeans \	-D <data arff file, e.g., iris.arff> \	-C <constraints file, e.g., iris.constraints> \	-K <class index (unspecified => last attribute, -1 => no class attribute in data)> \	-S <seedable if specified>\	-T <trainable, e.g., 4 (1=NONE, 2=EXTERNAL, 4=INTERNAL)> \	-M <metric, e.g., weka.core.metrics.WeightedEuclidean (WeightedEuclidean/WeightedDotP/KL)> \	-L <metriclearner, e.g., weka.clusterers.metriclearners.WEuclideanLearner (WEuclideanLearner/DotPGDLearner/KLGDLearner)> \	-G <regularizer, e.g., weka.clusterers.regularizers.Rayleigh (Rayleigh/L1)> \	-A <assigner, e.g., weka.clusterers.assigners.SimpleAssigner (SimpleAssigner/RandomAssigner/SortedAssigner/LPAssigner/RMNAssigner)> \	-I <initializer, e.g., weka.clusterers.initializers.WeightedFFNeighborhoodInit (WeightedFFNeighborhoodInit/RandomPerturbInitializer)> \	-N <num clusters: by default, read from classes in datasets> \	-R <random number seed, e.g., 42> \	-l <logtermweight, e.g., 0.01> \	-r <regularizertermweiht, e.g.,  0.001> \	-m <weight of must-link weights, e.g., 1> \	-c <weight of cannot-link weights, e.g., 1> \	-I <maximum number of clustering iterations, e.g., 20000> \	-B <maximum number of blank iterations, e.g., 20> \	-O <file were final cluster assignments are output, e.g., iris.assignments> \	-V <take transitive closure of constraints if specified> \Note: Only -D option is required, all others are optional

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -