📄 .#mpckmeans.java.1.110
字号:
public void setMetricLearner (MPCKMeansMetricLearner ml) { m_metricLearner = ml; m_metricLearner.setMetric(m_metric); m_metricLearner.setClusterer(this); } public MPCKMeansMetricLearner getMetricLearner () { return m_metricLearner; } /** Set/get the assigner */ public MPCKMeansAssigner getAssigner() { return m_Assigner; } public void setAssigner(MPCKMeansAssigner assigner) { assigner.setClusterer(this); this.m_Assigner = assigner; } /** Set/get the initializer */ public MPCKMeansInitializer getInitializer() { return m_Initializer; } public void setInitializer(MPCKMeansInitializer initializer) { initializer.setClusterer(this); this.m_Initializer = initializer; } /** Read the seeds from a hastable, where every key is an instance and every value is: * the cluster assignment of that instance * seedVector vector containing seeds */ public void seedClusterer(HashMap seedHash) { System.err.println("Not implemented here"); } public void printClusterAssignments() throws Exception { if (m_ClusterAssignmentsOutputFile != null) { PrintStream p = new PrintStream(new FileOutputStream(m_ClusterAssignmentsOutputFile)); for (int i=0; i<m_Instances.numInstances(); i++) { p.println(i + "\t" + m_ClusterAssignments[i]); } p.close(); } else { System.out.println("\nCluster Assignments:\n"); for (int i=0; i<m_Instances.numInstances(); i++) { System.out.println(i + "\t" + m_ClusterAssignments[i]); } } } /** Prints clusters */ public void printClusters () throws Exception { ArrayList clusters = getClusters(); for (int i=0; i<clusters.size(); i++) { Cluster currentCluster = (Cluster) clusters.get(i); System.out.println("\nCluster " + i + ": " + currentCluster.size() + " instances"); if (currentCluster == null) { System.out.println("(empty)"); } else { for (int j=0; j<currentCluster.size(); j++) { Instance instance = (Instance) currentCluster.get(j); System.out.println("Instance: " + instance); } } } } /** * Computes the clusters from the cluster assignments, for external access * * @exception Exception if clusters could not be computed successfully */ public ArrayList getClusters() throws Exception { m_Clusters = new ArrayList(); Cluster [] clusterArray = new Cluster[m_NumClusters]; for (int i=0; i < m_Instances.numInstances(); i++) { Instance inst = m_Instances.instance(i); if(clusterArray[m_ClusterAssignments[i]] == null) clusterArray[m_ClusterAssignments[i]] = new Cluster(); clusterArray[m_ClusterAssignments[i]].add(inst, 1); } for (int j =0; j< m_NumClusters; j++) m_Clusters.add(clusterArray[j]); return m_Clusters; } /** * Computes the clusters from the cluster assignments, for external access * * @exception Exception if clusters could not be computed successfully */ public HashSet[] getIndexClusters() throws Exception { m_IndexClusters = new HashSet[m_NumClusters]; for (int i=0; i < m_Instances.numInstances(); i++) { if (m_verbose) { // System.out.println("In getIndexClusters, " + i + " assigned to cluster " + m_ClusterAssignments[i]); } if (m_ClusterAssignments[i]!=-1 && m_ClusterAssignments[i] < m_NumClusters) { if (m_IndexClusters[m_ClusterAssignments[i]] == null) { m_IndexClusters[m_ClusterAssignments[i]] = new HashSet(); } m_IndexClusters[m_ClusterAssignments[i]].add(new Integer(i)); } } return m_IndexClusters; } public Enumeration listOptions () { return null; } public String [] getOptions () { String[] options = new String[150]; int current = 0; if (m_Seedable) { options[current++] = "-S"; } if (m_Trainable != TRAINING_NONE) { options[current++] = "-T"; if (m_Trainable == TRAINING_INTERNAL) { options[current++] = "Int"; } else { options[current++] = "Ext"; } } options[current++] = "-M"; options[current++] = Utils.removeSubstring(m_metric.getClass().getName(), "weka.core.metrics."); if (m_metric instanceof OptionHandler) { String[] metricOptions = ((OptionHandler)m_metric).getOptions(); for (int i = 0; i < metricOptions.length; i++) { options[current++] = metricOptions[i]; } } if (m_Trainable != TRAINING_NONE) { options[current++] = "-L"; options[current++] = Utils.removeSubstring(m_metricLearner.getClass().getName(), "weka.clusterers.metriclearners."); String[] metricLearnerOptions = ((OptionHandler)m_metricLearner).getOptions(); for (int i = 0; i < metricLearnerOptions.length; i++) { options[current++] = metricLearnerOptions[i]; } } if (m_regularize) { options[current++] = "-G"; options[current++] = Utils.removeSubstring(m_metric.getRegularizer().getClass().getName(), "weka.clusterers.regularizers."); if (m_metric.getRegularizer() instanceof OptionHandler) { String[] regularizerOptions = ((OptionHandler)m_metric.getRegularizer()).getOptions(); for (int i = 0; i < regularizerOptions.length; i++) { options[current++] = regularizerOptions[i]; } } } options[current++] = "-A"; options[current++] = Utils.removeSubstring(m_Assigner.getClass().getName(), "weka.clusterers.assigners."); if (m_Assigner instanceof OptionHandler) { String[] assignerOptions = ((OptionHandler)m_Assigner).getOptions(); for (int i = 0; i < assignerOptions.length; i++) { options[current++] = assignerOptions[i]; } } options[current++] = "-I"; options[current++] = Utils.removeSubstring(m_Initializer.getClass().getName(), "weka.clusterers.initializers."); if (m_Initializer instanceof OptionHandler) { String[] initializerOptions = ((OptionHandler)m_Initializer).getOptions(); for (int i = 0; i < initializerOptions.length; i++) { options[current++] = initializerOptions[i]; } } if (m_useMultipleMetrics) { options[current++] = "-U"; } options[current++] = "-N"; options[current++] = "" + getNumClusters(); options[current++] = "-R"; options[current++] = "" + getRandomSeed(); options[current++] = "-l"; options[current++] = "" + m_logTermWeight; options[current++] = "-r"; options[current++] = "" + m_regularizerTermWeight; options[current++] = "-m"; options[current++] = "" + m_MLweight; options[current++] = "-c"; options[current++] = "" + m_CLweight; options[current++] = "-I"; options[current++] = "" + m_maxIterations; options[current++] = "-B"; options[current++] = "" + m_maxBlankIterations; options[current++] = "-O"; options[current++] = "" + m_ClusterAssignmentsOutputFile; options[current++] = "-V"; options[current++] = "" + m_useTransitiveConstraints; while (current < options.length) { options[current++] = ""; } return options; } /** * Parses a given list of options. * @param options the list of options as an array of strings * @exception Exception if an option is not supported * **/ public void setOptions (String[] options) throws Exception { if (Utils.getFlag('S', options)) { System.out.println("Setting seedable to: true"); setSeedable(true); } String optionString = Utils.getOption('T', options); if (optionString.length() != 0) { setTrainable(new SelectedTag(Integer.parseInt(optionString), TAGS_TRAINING)); System.out.println("Setting trainable to: true"); } optionString = Utils.getOption('M', options); if (optionString.length() != 0) { String[] metricSpec = Utils.splitOptions(optionString); String metricName = metricSpec[0]; metricSpec[0] = ""; setMetric((LearnableMetric) Utils.forName(LearnableMetric.class, metricName, metricSpec)); System.out.println("Setting metric to: " + metricName); } optionString = Utils.getOption('L', options); if (optionString.length() != 0) { String[] learnerSpec = Utils.splitOptions(optionString); String learnerName = learnerSpec[0]; learnerSpec[0] = ""; setMetricLearner((MPCKMeansMetricLearner) Utils.forName(MPCKMeansMetricLearner.class, learnerName, learnerSpec)); System.out.println("Setting metricLearner to: " + m_metricLearner); } optionString = Utils.getOption('G', options); if (optionString.length() != 0) { String[] regularizerSpec = Utils.splitOptions(optionString); String regularizerName = regularizerSpec[0]; regularizerSpec[0] = ""; m_metric.setRegularizer((Regularizer) Utils.forName(Regularizer.class, regularizerName, regularizerSpec)); System.out.println("Setting regularizer to: " + regularizerName); } optionString = Utils.getOption('A', options); if (optionString.length() != 0) { String[] assignerSpec = Utils.splitOptions(optionString); String assignerName = assignerSpec[0]; assignerSpec[0] = ""; setAssigner((MPCKMeansAssigner) Utils.forName(MPCKMeansAssigner.class, assignerName, assignerSpec)); System.out.println("Setting assigner to: " + assignerName); } optionString = Utils.getOption('I', options); if (optionString.length() != 0) { String[] initializerSpec = Utils.splitOptions(optionString); String initializerName = initializerSpec[0]; initializerSpec[0] = ""; setInitializer((MPCKMeansInitializer) Utils.forName(MPCKMeansInitializer.class, initializerName, initializerSpec)); System.out.println("Setting initializer to: " + initializerName); } if (Utils.getFlag('U', options)) { setUseMultipleMetrics(true); System.out.println("Setting multiple metrics to: true"); } optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); System.out.println("Setting numClusters to: " + m_NumClusters); } optionString = Utils.getOption('R', options); if (optionString.length() != 0) { setRandomSeed(Integer.parseInt(optionString)); System.out.println("Setting randomSeed to: " + m_RandomSeed); } optionString = Utils.getOption('l', options); if (optionString.length() != 0) { setLogTermWeight(Double.parseDouble(optionString)); System.out.println("Setting logTermWeight to: " + m_logTermWeight); } optionString = Utils.getOption('r', options); if (optionString.length() != 0) { setRegularizerTermWeight(Double.parseDouble(optionString)); System.out.println("Setting regularizerTermWeight to: " + m_regularizerTermWeight); } optionString = Utils.getOption('m', options); if (optionString.length() != 0) { setMustLinkWeight(Double.parseDouble(optionString)); System.out.println("Setting mustLinkWeight to: " + m_MLweight); } optionString = Utils.getOption('c', options); if (optionString.length() != 0) { setCannotLinkWeight(Double.parseDouble(optionString)); System.out.println("Setting cannotLinkWeight to: " + m_CLweight); } optionString = Utils.getOption('I', options); if (optionString.length() != 0) { setMaxIterations(Integer.parseInt(optionString)); System.out.println("Setting maxIterations to: " + m_maxIterations); } optionString = Utils.getOption('B', options); if (optionString.length() != 0) { setMaxBlankIterations(Integer.parseInt(optionString)); System.out.println("Setting maxBlankIterations to: " + m_maxBlankIterations); } optionString = Utils.getOption('O', options); if (optionString.length() != 0) { setClusterAssignmentsOutputFile(optionString); System.out.println("Setting clusterAssignmentsOutputFile to: " + m_ClusterAssignmentsOutputFile); } if (Utils.getFlag('V', options)) { setUseTransitiveConstraints(true); System.out.println("Setting useTransitiveConstraints to: true"); } } /** * return a string describing this clusterer * * @return a description of the clusterer as a string */ public String toString() { StringBuffer temp = new StringBuffer(); return temp.toString(); } /** * set the verbosity level of the clusterer * @param verbose messages on(true) or off (false) */ public void setVerbose (boolean verbose) { m_verbose = verbose; } /** * get the verbosity level of the clusterer * @return messages on(true) or off (false) */ public boolean getVerbose () { return m_verbose; } /** Set/get the use of transitive closure */ public void setUseTransitiveConstraints(boolean useTransitiveConstraints) { m_useTransitiveConstraints = useTransitiveConstraints; } public boolean getUseTransitiveConstraints() { return m_useTransitiveConstraints; } /** * Turn on/off the use of per-cluster metrics * @param useMultipleMetrics if true, individual metrics will be used for each cluster */ public void setUseMultipleMetrics (boolean useMul
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -