⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 extractionevaluation.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ExtractionEvaluation.java *    Copyright (C) 2003 Mikhail Bilenko * */package  weka.extraction;import  java.util.*;import  java.io.*;import  weka.core.*;import  weka.filters.Filter;import  weka.filters.unsupervised.attribute.Remove;/** * Class for evaluating extractors * * @author  Mikhail Bilenko (mbilenko@cs.utexas.edu) */public class ExtractionEvaluation {  /** Training instances */  protected Instances m_trainInstances;    /** Test instances */  protected Instances m_testInstances;  /**   * Returns a string describing this evaluator   * @return a description of the evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return " A extraction evaluator that evaluates results of running a "      + "extraction experiment.";  }  /** A default constructor */  public ExtractionEvaluation () {  }  /** Train an extractor on supplied data   * @param extractor the extractor to train   * @param labeledData data that is labeled for training the extractor   * @param unlabeledData unlabeled data for transductive extractors   */  public void trainExtractor(Extractor extractor, Instances labeledData, Instances unlabeledData) throws Exception {    extractor.trainExtractor(labeledData, unlabeledData);  }   /**   * Evaluates an extractor on a given set of test instances   *   * @param extractor the extractor to evaluate   * @param testData set of test instances for evaluation   * @return a list of arrays containing the basic statistics for each point   * @exception Exception if model could not be evaluated successfully   */  public ArrayList evaluateModel (Extractor extractor, Instances testData) throws Exception {    // Run the extractor collecting data    HashMap docFillerMap = createDocFillerMap(testData);    extractor.testExtractor(testData, docFillerMap);    return extractor.getStatistics();  }  /**   * Given a set of data, create a HashMap which maps each Instance's uniqueID   * to a fillerPositionListMap.  In that map, every filler is mapped to a list of   * positions where it should extracted.   */  protected HashMap createDocFillerMap(Instances data) {    HashMap docFillerMap = new HashMap();    Attribute uniqueIDAttr = data.attribute("uniqueID");    Attribute textAttr = data.attribute("text");    for (int i = 0; i < data.numInstances(); i++) {      Instance instance = data.instance(i);      String uniqueID = instance.stringValue(uniqueIDAttr);      String text = instance.stringValue(textAttr);      HashMap fillerPositionListMap = new HashMap();      // TODO:  go through text, and create a map where each      // filler is mapped to a list of positions where it occurs      docFillerMap.put(uniqueID, fillerPositionListMap);    }     return docFillerMap;  } }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -