📄 apriori.java
字号:
* Get the value of lowerBoundMinSupport. * * @return Value of lowerBoundMinSupport. */ public double getLowerBoundMinSupport() { return m_lowerBoundMinSupport; } /** * Set the value of lowerBoundMinSupport. * * @param v Value to assign to lowerBoundMinSupport. */ public void setLowerBoundMinSupport(double v) { m_lowerBoundMinSupport = v; } /** * Get the metric type * * @return the type of metric to use for ranking rules */ public SelectedTag getMetricType() { return new SelectedTag(m_metricType, TAGS_SELECTION); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String metricTypeTipText() { return "Set the type of metric by which to rank rules. Confidence is " +"the proportion of the examples covered by the premise that are also " +"covered by the consequence. Lift is confidence divided by the " +"proportion of all examples that are covered by the consequence. This " +"is a measure of the importance of the association that is independent " +"of support. Leverage is the proportion of additional examples covered " +"by both the premise and consequence above those expected if the " +"premise and consequence were independent of each other. The total " +"number of examples that this represents is presented in brackets " +"following the leverage. Conviction is " +"another measure of departure from independence. Conviction is given " +"by "; } /** * Set the metric type for ranking rules * * @param d the type of metric */ public void setMetricType (SelectedTag d) { if (d.getTags() == TAGS_SELECTION) { m_metricType = d.getSelectedTag().getID(); } if (m_significanceLevel != -1 && m_metricType != CONFIDENCE) { m_metricType = CONFIDENCE; } if (m_metricType == CONFIDENCE) { setMinMetric(0.9); } if (m_metricType == LIFT || m_metricType == CONVICTION) { setMinMetric(1.1); } if (m_metricType == LEVERAGE) { setMinMetric(0.1); } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minMetricTipText() { return "Minimum metric score. Consider only rules with scores higher than " +"this value."; } /** * Get the value of minConfidence. * * @return Value of minConfidence. */ public double getMinMetric() { return m_minMetric; } /** * Set the value of minConfidence. * * @param v Value to assign to minConfidence. */ public void setMinMetric(double v) { m_minMetric = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numRulesTipText() { return "Number of rules to find."; } /** * Get the value of numRules. * * @return Value of numRules. */ public int getNumRules() { return m_numRules; } /** * Set the value of numRules. * * @param v Value to assign to numRules. */ public void setNumRules(int v) { m_numRules = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String deltaTipText() { return "Iteratively decrease support by this factor. Reduces support " +"until min support is reached or required number of rules has been " +"generated."; } /** * Get the value of delta. * * @return Value of delta. */ public double getDelta() { return m_delta; } /** * Set the value of delta. * * @param v Value to assign to delta. */ public void setDelta(double v) { m_delta = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String significanceLevelTipText() { return "Significance level. Significance test (confidence metric only)."; } /** * Get the value of significanceLevel. * * @return Value of significanceLevel. */ public double getSignificanceLevel() { return m_significanceLevel; } /** * Set the value of significanceLevel. * * @param v Value to assign to significanceLevel. */ public void setSignificanceLevel(double v) { m_significanceLevel = v; } /** * Method that finds all large itemsets for the given set of instances. * * @param the instances to be used * @exception Exception if an attribute is numeric */ private void findLargeItemSets(Instances instances) throws Exception { FastVector kMinusOneSets, kSets; Hashtable hashtable; int necSupport, necMaxSupport,i = 0; m_instances = instances; // Find large itemsets // minimum support necSupport = (int)(m_minSupport * (double)instances.numInstances()+0.5); necMaxSupport = (int)(m_upperBoundMinSupport * (double)instances.numInstances()+0.5); kSets = ItemSet.singletons(instances); ItemSet.upDateCounters(kSets, instances); kSets = ItemSet.deleteItemSets(kSets, necSupport, necMaxSupport); if (kSets.size() == 0) return; do { m_Ls.addElement(kSets); kMinusOneSets = kSets; kSets = ItemSet.mergeAllItemSets(kMinusOneSets, i, instances.numInstances()); hashtable = ItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); m_hashtables.addElement(hashtable); kSets = ItemSet.pruneItemSets(kSets, hashtable); ItemSet.upDateCounters(kSets, instances); kSets = ItemSet.deleteItemSets(kSets, necSupport, necMaxSupport); i++; } while (kSets.size() > 0); } /** * Method that finds all association rules and performs significance test. * * @exception Exception if an attribute is numeric */ private void findRulesBruteForce() throws Exception { FastVector[] rules; // Build rules for (int j = 1; j < m_Ls.size(); j++) { FastVector currentItemSets = (FastVector)m_Ls.elementAt(j); Enumeration enumItemSets = currentItemSets.elements(); while (enumItemSets.hasMoreElements()) { ItemSet currentItemSet = (ItemSet)enumItemSets.nextElement(); rules=currentItemSet. generateRulesBruteForce(m_minMetric,m_metricType, m_hashtables,j+1, m_instances.numInstances(), m_significanceLevel); for (int k = 0; k < rules[0].size(); k++) { m_allTheRules[0].addElement(rules[0].elementAt(k)); m_allTheRules[1].addElement(rules[1].elementAt(k)); m_allTheRules[2].addElement(rules[2].elementAt(k)); m_allTheRules[3].addElement(rules[3].elementAt(k)); m_allTheRules[4].addElement(rules[4].elementAt(k)); m_allTheRules[5].addElement(rules[5].elementAt(k)); } } } } /** * Method that finds all association rules. * * @exception Exception if an attribute is numeric */ private void findRulesQuickly() throws Exception { FastVector[] rules; // Build rules for (int j = 1; j < m_Ls.size(); j++) { FastVector currentItemSets = (FastVector)m_Ls.elementAt(j); Enumeration enumItemSets = currentItemSets.elements(); while (enumItemSets.hasMoreElements()) { ItemSet currentItemSet = (ItemSet)enumItemSets.nextElement(); rules = currentItemSet.generateRules(m_minMetric, m_hashtables, j + 1); for (int k = 0; k < rules[0].size(); k++) { m_allTheRules[0].addElement(rules[0].elementAt(k)); m_allTheRules[1].addElement(rules[1].elementAt(k)); m_allTheRules[2].addElement(rules[2].elementAt(k)); } } } } /** * Main method for testing this class. */ public static void main(String[] options) { String trainFileString; StringBuffer text = new StringBuffer(); Apriori apriori = new Apriori(); Reader reader; try { text.append("\n\nApriori options:\n\n"); text.append("-t <training file>\n"); text.append("\tThe name of the training file.\n"); Enumeration enum = apriori.listOptions(); while (enum.hasMoreElements()) { Option option = (Option)enum.nextElement(); text.append(option.synopsis()+'\n'); text.append(option.description()+'\n'); } trainFileString = Utils.getOption('t', options); if (trainFileString.length() == 0) throw new Exception("No training file given!"); apriori.setOptions(options); reader = new BufferedReader(new FileReader(trainFileString)); apriori.buildAssociations(new Instances(reader)); System.out.println(apriori); } catch(Exception e) { e.printStackTrace(); System.out.println("\n"+e.getMessage()+text); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -