⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 apriori.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
	}      }      m_minSupport -= m_delta;      m_minSupport = (m_minSupport < m_lowerBoundMinSupport) 	? 0 	: m_minSupport;      necSupport = (int)(m_minSupport * 			 (double)instances.numInstances()+0.5);      m_cycles++;      if (m_verbose) {	if (m_Ls.size() > 1) {	  System.out.println(toString());	}      }    } while ((m_allTheRules[0].size() < m_numRules) && 	     (m_minSupport >= m_lowerBoundMinSupport)	     /*	     (necSupport >= lowerBoundNumInstancesSupport)*/	     /*	     (Utils.grOrEq(m_minSupport, m_lowerBoundMinSupport)) */ &&     	     (necSupport >= 1));    m_minSupport += m_delta;  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    String string1 = "\tThe required number of rules. (default = " + m_numRules + ")",      string2 =       "\tThe minimum confidence of a rule. (default = " + m_minMetric + ")",      string3 = "\tThe delta by which the minimum support is decreased in\n",      string4 = "\teach iteration. (default = " + m_delta + ")",      string5 =       "\tThe lower bound for the minimum support. (default = " +       m_lowerBoundMinSupport + ")",      string6 = "\tIf used, rules are tested for significance at\n",      string7 = "\tthe given level. Slower. (default = no significance testing)",      string8 = "\tIf set the itemsets found are also output. (default = no)",      stringType = "\tThe metric type by which to rank rules. (default = "      +"confidence)";        FastVector newVector = new FastVector(9);    newVector.addElement(new Option(string1, "N", 1, 				    "-N <required number of rules output>"));    newVector.addElement(new Option(stringType, "T", 1,				    "-T <0=confidence | 1=lift | "				    +"2=leverage | 3=Conviction>"));    newVector.addElement(new Option(string2, "C", 1, 				    "-C <minimum metric score of a rule>"));    newVector.addElement(new Option(string3 + string4, "D", 1,				    "-D <delta for minimum support>"));    newVector.addElement(new Option("\tUpper bound for minimum support. "				    +"(default = 1.0)", "U", 1,				     "-U <upper bound for minimum support>"));    newVector.addElement(new Option(string5, "M", 1,				    "-M <lower bound for minimum support>"));    newVector.addElement(new Option(string6 + string7, "S", 1,				    "-S <significance level>"));    newVector.addElement(new Option(string8, "S", 0,				    "-I"));    newVector.addElement(new Option("\tRemove columns that contain "				    +"all missing values (default = no)"				    , "R", 0,				    "-R"));    newVector.addElement(new Option("\tReport progress iteratively. (default "				    +"= no)", "V", 0,				    "-V"));        return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *      * -N required number of rules <br>   * The required number of rules (default: 10). <p>   *   * -T type of metric by which to sort rules <br>   * 0 = confidence | 1 = lift | 2 = leverage | 3 = Conviction. <p>   *   * -C minimum metric score of a rule <br>   * The minimum confidence of a rule (default: 0.9). <p>   *   * -D delta for minimum support <br>   * The delta by which the minimum support is decreased in   * each iteration (default: 0.05).   *   * -U upper bound for minimum support <br>   * The upper bound for minimum support. Don't explicitly look for    * rules with more than this level of support. <p>   *   * -M lower bound for minimum support <br>   * The lower bound for the minimum support (default = 0.1). <p>   *   * -S significance level <br>   * If used, rules are tested for significance at   * the given level. Slower (default = no significance testing). <p>   *   * -I <br>   * If set the itemsets found are also output (default = no). <p>   *   * -V <br>   * If set then progress is reported iteratively during execution. <p>   *   * -R <br>   * If set then columns that contain all missing values are removed from   * the data. <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported    */  public void setOptions(String[] options) throws Exception {        resetOptions();    String numRulesString = Utils.getOption('N', options),      minConfidenceString = Utils.getOption('C', options),      deltaString = Utils.getOption('D', options),      maxSupportString = Utils.getOption('U', options),      minSupportString = Utils.getOption('M', options),      significanceLevelString = Utils.getOption('S', options);    String metricTypeString = Utils.getOption('T', options);    if (metricTypeString.length() != 0) {      setMetricType(new SelectedTag(Integer.parseInt(metricTypeString),				    TAGS_SELECTION));    }        if (numRulesString.length() != 0) {      m_numRules = Integer.parseInt(numRulesString);    }    if (minConfidenceString.length() != 0) {      m_minMetric = (new Double(minConfidenceString)).doubleValue();    }    if (deltaString.length() != 0) {      m_delta = (new Double(deltaString)).doubleValue();    }    if (maxSupportString.length() != 0) {      setUpperBoundMinSupport((new Double(maxSupportString)).doubleValue());    }    if (minSupportString.length() != 0) {      m_lowerBoundMinSupport = (new Double(minSupportString)).doubleValue();    }    if (significanceLevelString.length() != 0) {      m_significanceLevel = (new Double(significanceLevelString)).doubleValue();    }    m_outputItemSets = Utils.getFlag('I', options);    m_verbose = Utils.getFlag('V', options);    setRemoveAllMissingCols(Utils.getFlag('R', options));  }  /**   * Gets the current settings of the Apriori object.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [16];    int current = 0;    if (m_outputItemSets) {      options[current++] = "-I";    }    if (getRemoveAllMissingCols()) {      options[current++] = "-R";    }    options[current++] = "-N"; options[current++] = "" + m_numRules;    options[current++] = "-T"; options[current++] = "" + m_metricType;    options[current++] = "-C"; options[current++] = "" + m_minMetric;    options[current++] = "-D"; options[current++] = "" + m_delta;    options[current++] = "-U"; options[current++] = ""+m_upperBoundMinSupport;    options[current++] = "-M"; options[current++] = ""+m_lowerBoundMinSupport;    options[current++] = "-S"; options[current++] = "" + m_significanceLevel;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Outputs the size of all the generated sets of itemsets and the rules.   */  public String toString() {    StringBuffer text = new StringBuffer();    if (m_Ls.size() <= 1)      return "\nNo large itemsets and rules found!\n";    text.append("\nApriori\n=======\n\n");    text.append("Minimum support: " 		+ Utils.doubleToString(m_minSupport,2) + '\n');    text.append("Minimum metric <");    switch(m_metricType) {    case CONFIDENCE:      text.append("confidence>: ");      break;    case LIFT:      text.append("lift>: ");      break;    case LEVERAGE:      text.append("leverage>: ");      break;    case CONVICTION:      text.append("conviction>: ");      break;    }    text.append(Utils.doubleToString(m_minMetric,2)+'\n');       if (m_significanceLevel != -1)      text.append("Significance level: "+		  Utils.doubleToString(m_significanceLevel,2)+'\n');    text.append("Number of cycles performed: " + m_cycles+'\n');    text.append("\nGenerated sets of large itemsets:\n");    for (int i = 0; i < m_Ls.size(); i++) {      text.append("\nSize of set of large itemsets L("+(i+1)+"): "+		  ((FastVector)m_Ls.elementAt(i)).size()+'\n');      if (m_outputItemSets) {	text.append("\nLarge Itemsets L("+(i+1)+"):\n");	for (int j = 0; j < ((FastVector)m_Ls.elementAt(i)).size(); j++)	  text.append(((ItemSet)((FastVector)m_Ls.elementAt(i)).elementAt(j)).		      toString(m_instances)+"\n");      }    }    text.append("\nBest rules found:\n\n");    for (int i = 0; i < m_allTheRules[0].size(); i++) {      text.append(Utils.doubleToString((double)i+1, 		  (int)(Math.log(m_numRules)/Math.log(10)+1),0)+		  ". " + ((ItemSet)m_allTheRules[0].elementAt(i)).		  toString(m_instances) 		  + " ==> " + ((ItemSet)m_allTheRules[1].elementAt(i)).		  toString(m_instances) +"    conf:("+  		  Utils.doubleToString(((Double)m_allTheRules[2].					elementAt(i)).doubleValue(),2)+")");      if (m_metricType != CONFIDENCE || m_significanceLevel != -1) {	text.append((m_metricType == LIFT ? " <" : "")+" lift:("+  		    Utils.doubleToString(((Double)m_allTheRules[3].					  elementAt(i)).doubleValue(),2)		    +")"+(m_metricType == LIFT ? ">" : ""));	text.append((m_metricType == LEVERAGE ? " <" : "")+" lev:("+  		    Utils.doubleToString(((Double)m_allTheRules[4].					  elementAt(i)).doubleValue(),2)		    +")");	text.append(" ["+		    (int)(((Double)m_allTheRules[4].elementAt(i))			  .doubleValue() * (double)m_instances.numInstances())		    +"]"+(m_metricType == LEVERAGE ? ">" : ""));	text.append((m_metricType == CONVICTION ? " <" : "")+" conv:("+  		    Utils.doubleToString(((Double)m_allTheRules[5].					  elementAt(i)).doubleValue(),2)		    +")"+(m_metricType == CONVICTION ? ">" : ""));      }      text.append('\n');    }    return text.toString();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String removeAllMissingColsTipText() {    return "Remove columns with all missing values.";  }  /**   * Remove columns containing all missing values.   * @param r true if cols are to be removed.   */  public void setRemoveAllMissingCols(boolean r) {    m_removeMissingCols = r;  }  /**   * Returns whether columns containing all missing values are to be removed   * @return true if columns are to be removed.   */  public boolean getRemoveAllMissingCols() {    return m_removeMissingCols;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String upperBoundMinSupportTipText() {    return "Upper bound for minimum support. Start iteratively decreasing "      +"minimum support from this value.";  }  /**   * Get the value of upperBoundMinSupport.   *   * @return Value of upperBoundMinSupport.   */  public double getUpperBoundMinSupport() {        return m_upperBoundMinSupport;  }    /**   * Set the value of upperBoundMinSupport.   *   * @param v  Value to assign to upperBoundMinSupport.   */  public void setUpperBoundMinSupport(double v) {        m_upperBoundMinSupport = v;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String lowerBoundMinSupportTipText() {    return "Lower bound for minimum support.";  }  /**

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -