📄 itemset.java
字号:
consequenceUnconditionedCounter))); } } else { double tempConf = confidenceForRule(premise, consequence); double tempLift = liftForRule(premise, consequence, consequenceUnconditionedCounter); double tempLev = leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); double tempConv = convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); switch(metricType) { case 1: metric = tempLift; break; case 2: metric = tempLev; break; case 3: metric = tempConv; break; default: throw new Exception("ItemSet: Unknown metric type!"); } if (!(metric < minMetric)) { premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(tempConf)); lift.addElement(new Double(tempLift)); lev.addElement(new Double(tempLev)); conv.addElement(new Double(tempConv)); } } } } rules[0] = premises; rules[1] = consequences; rules[2] = conf; rules[3] = lift; rules[4] = lev; rules[5] = conv; return rules; } /** * Return a hashtable filled with the given item sets. * * @param itemSets the set of item sets to be used for filling the hash table * @param initialSize the initial size of the hashtable * @return the generated hashtable */ public static Hashtable getHashtable(FastVector itemSets, int initialSize) { Hashtable hashtable = new Hashtable(initialSize); for (int i = 0; i < itemSets.size(); i++) { ItemSet current = (ItemSet)itemSets.elementAt(i); hashtable.put(current, new Integer(current.m_counter)); } return hashtable; } /** * Produces a hash code for a item set. * * @return a hash code for a set of items */ public final int hashCode() { long result = 0; for (int i = m_items.length-1; i >= 0; i--) result += (i * m_items[i]); return (int)result; } /** * Merges all item sets in the set of (k-1)-item sets * to create the (k)-item sets and updates the counters. * * @param itemSets the set of (k-1)-item sets * @param size the value of (k-1) * @return the generated (k)-item sets */ public static FastVector mergeAllItemSets(FastVector itemSets, int size, int totalTrans) { FastVector newVector = new FastVector(); ItemSet result; int numFound, k; for (int i = 0; i < itemSets.size(); i++) { ItemSet first = (ItemSet)itemSets.elementAt(i); out: for (int j = i+1; j < itemSets.size(); j++) { ItemSet second = (ItemSet)itemSets.elementAt(j); result = new ItemSet(totalTrans); result.m_items = new int[first.m_items.length]; // Find and copy common prefix of size 'size' numFound = 0; k = 0; while (numFound < size) { if (first.m_items[k] == second.m_items[k]) { if (first.m_items[k] != -1) numFound++; result.m_items[k] = first.m_items[k]; } else break out; k++; } // Check difference while (k < first.m_items.length) { if ((first.m_items[k] != -1) && (second.m_items[k] != -1)) break; else { if (first.m_items[k] != -1) result.m_items[k] = first.m_items[k]; else result.m_items[k] = second.m_items[k]; } k++; } if (k == first.m_items.length) { result.m_counter = 0; newVector.addElement(result); } } } return newVector; } /** * Prunes a set of (k)-item sets using the given (k-1)-item sets. * * @param toPrune the set of (k)-item sets to be pruned * @param kMinusOne the (k-1)-item sets to be used for pruning * @return the pruned set of item sets */ public static FastVector pruneItemSets(FastVector toPrune, Hashtable kMinusOne) { FastVector newVector = new FastVector(toPrune.size()); int help, j; for (int i = 0; i < toPrune.size(); i++) { ItemSet current = (ItemSet)toPrune.elementAt(i); for (j = 0; j < current.m_items.length; j++) if (current.m_items[j] != -1) { help = current.m_items[j]; current.m_items[j] = -1; if (kMinusOne.get(current) == null) { current.m_items[j] = help; break; } else current.m_items[j] = help; } if (j == current.m_items.length) newVector.addElement(current); } return newVector; } /** * Prunes a set of rules. * * @param rules a two-dimensional array of lists of item sets. The first list * of item sets contains the premises, the second one the consequences. * @param minConfidence the minimum confidence the rules have to have */ public static void pruneRules(FastVector[] rules, double minConfidence) { FastVector newPremises = new FastVector(rules[0].size()), newConsequences = new FastVector(rules[1].size()), newConf = new FastVector(rules[2].size()); for (int i = 0; i < rules[0].size(); i++) if (!(((Double)rules[2].elementAt(i)).doubleValue() < minConfidence)) { newPremises.addElement(rules[0].elementAt(i)); newConsequences.addElement(rules[1].elementAt(i)); newConf.addElement(rules[2].elementAt(i)); } rules[0] = newPremises; rules[1] = newConsequences; rules[2] = newConf; } /** * Converts the header info of the given set of instances into a set * of item sets (singletons). The ordering of values in the header file * determines the lexicographic order. * * @param instances the set of instances whose header info is to be used * @return a set of item sets, each containing a single item * @exception Exception if singletons can't be generated successfully */ public static FastVector singletons(Instances instances) throws Exception { FastVector setOfItemSets = new FastVector(); ItemSet current; for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) throw new Exception("Can't handle numeric attributes!"); for (int j = 0; j < instances.attribute(i).numValues(); j++) { current = new ItemSet(instances.numInstances()); current.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) current.m_items[k] = -1; current.m_items[i] = j; setOfItemSets.addElement(current); } } return setOfItemSets; } /** * Subtracts an item set from another one. * * @param toSubtract the item set to be subtracted from this one. * @return an item set that only contains items form this item sets that * are not contained by toSubtract */ public final ItemSet subtract(ItemSet toSubtract) { ItemSet result = new ItemSet(m_totalTransactions); result.m_items = new int[m_items.length]; for (int i = 0; i < m_items.length; i++) if (toSubtract.m_items[i] == -1) result.m_items[i] = m_items[i]; else result.m_items[i] = -1; result.m_counter = 0; return result; } /** * Outputs the support for an item set. * * @return the support */ public final int support() { return m_counter; } /** * Returns the contents of an item set as a string. * * @param instances contains the relevant header information * @return string describing the item set */ public final String toString(Instances instances) { StringBuffer text = new StringBuffer(); for (int i = 0; i < instances.numAttributes(); i++) if (m_items[i] != -1) { text.append(instances.attribute(i).name()+'='); text.append(instances.attribute(i).value(m_items[i])+' '); } text.append(m_counter); return text.toString(); } /** * Updates counter of item set with respect to given transaction. * * @param instance the instance to be used for ubdating the counter */ public final void upDateCounter(Instance instance) { if (containedBy(instance)) m_counter++; } /** * Updates counters for a set of item sets and a set of instances. * * @param itemSets the set of item sets which are to be updated * @param instances the instances to be used for updating the counters */ public static void upDateCounters(FastVector itemSets, Instances instances) { for (int i = 0; i < instances.numInstances(); i++) { Enumeration enum = itemSets.elements(); while (enum.hasMoreElements()) ((ItemSet)enum.nextElement()).upDateCounter(instances.instance(i)); } } /** * Generates rules with more than one item in the consequence. * * @param rules all the rules having (k-1)-item sets as consequences * @param numItemsInSet the size of the item set for which the rules * are to be generated * @param numItemsInConsequence the value of (k-1) * @param minConfidence the minimum confidence a rule has to have * @param hashtables the hashtables containing all(!) previously generated * item sets * @return all the rules having (k)-item sets as consequences */ private final FastVector[] moreComplexRules(FastVector[] rules, int numItemsInSet, int numItemsInConsequence, double minConfidence, FastVector hashtables) { ItemSet newPremise; FastVector[] result, moreResults; FastVector newConsequences, newPremises = new FastVector(), newConf = new FastVector(); Hashtable hashtable; if (numItemsInSet > numItemsInConsequence + 1) { hashtable = (Hashtable)hashtables.elementAt(numItemsInSet - numItemsInConsequence - 2); newConsequences = mergeAllItemSets(rules[1], numItemsInConsequence - 1, m_totalTransactions); Enumeration enum = newConsequences.elements(); while (enum.hasMoreElements()) { ItemSet current = (ItemSet)enum.nextElement(); current.m_counter = m_counter; newPremise = subtract(current); newPremise.m_counter = ((Integer)hashtable.get(newPremise)).intValue(); newPremises.addElement(newPremise); newConf.addElement(new Double(confidenceForRule(newPremise, current))); } result = new FastVector[3]; result[0] = newPremises; result[1] = newConsequences; result[2] = newConf; pruneRules(result, minConfidence); moreResults = moreComplexRules(result,numItemsInSet,numItemsInConsequence+1, minConfidence, hashtables); if (moreResults != null) for (int i = 0; i < moreResults[0].size(); i++) { result[0].addElement(moreResults[0].elementAt(i)); result[1].addElement(moreResults[1].elementAt(i)); result[2].addElement(moreResults[2].elementAt(i)); } return result; } else return null; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -