📄 itemset.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * ItemSet.java * Copyright (C) 1999 Eibe Frank * */package weka.associations;import java.io.*;import java.util.*;import weka.core.*;/** * Class for storing a set of items. Item sets are stored in a lexicographic * order, which is determined by the header information of the set of instances * used for generating the set of items. All methods in this class assume that * item sets are stored in lexicographic order. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class ItemSet implements Serializable { /** The items stored as an array of of ints. */ protected int[] m_items; /** Counter for how many transactions contain this item set. */ protected int m_counter; /** The total number of transactions */ protected int m_totalTransactions; /** * Constructor * @param totalTrans the total number of transactions in the data */ public ItemSet(int totalTrans) { m_totalTransactions = totalTrans; } /** * Outputs the confidence for a rule. * * @param premise the premise of the rule * @param consequence the consequence of the rule * @return the confidence on the training data */ public static double confidenceForRule(ItemSet premise, ItemSet consequence) { return (double)consequence.m_counter/(double)premise.m_counter; } /** * Outputs the lift for a rule. Lift is defined as:<br> * confidence / prob(consequence) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the lift on the training data */ public double liftForRule(ItemSet premise, ItemSet consequence, int consequenceCount) { double confidence = confidenceForRule(premise, consequence); return confidence / ((double)consequenceCount / (double)m_totalTransactions); } /** * Outputs the leverage for a rule. Leverage is defined as: <br> * prob(premise & consequence) - (prob(premise) * prob(consequence)) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param premiseCount how many times the premise occurs independent * of the consequent * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the leverage on the training data */ public double leverageForRule(ItemSet premise, ItemSet consequence, int premiseCount, int consequenceCount) { double coverageForItemSet = (double)consequence.m_counter / (double)m_totalTransactions; double expectedCoverageIfIndependent = ((double)premiseCount / (double)m_totalTransactions) * ((double)consequenceCount / (double)m_totalTransactions); double lev = coverageForItemSet - expectedCoverageIfIndependent; return lev; } /** * Outputs the conviction for a rule. Conviction is defined as: <br> * prob(premise) * prob(!consequence) / prob(premise & !consequence) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param premiseCount how many times the premise occurs independent * of the consequent * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the conviction on the training data */ public double convictionForRule(ItemSet premise, ItemSet consequence, int premiseCount, int consequenceCount) { double num = (double)premiseCount * (double)(m_totalTransactions - consequenceCount) * (double)m_totalTransactions; double denom = ((premiseCount - consequence.m_counter)+1); if (num < 0 || denom < 0) { System.err.println("*** "+num+" "+denom); System.err.println("premis count: "+premiseCount+" consequence count "+consequenceCount+" total trans "+m_totalTransactions); } return num / denom; } /** * Checks if an instance contains an item set. * * @param instance the instance to be tested * @return true if the given instance contains this item set */ public final boolean containedBy(Instance instance) { for (int i = 0; i < instance.numAttributes(); i++) if (m_items[i] > -1) { if (instance.isMissing(i)) return false; if (m_items[i] != (int)instance.value(i)) return false; } return true; } /** * Deletes all item sets that don't have minimum support. * * @param itemSets the set of item sets to be pruned * @param minSupport the minimum number of transactions to be covered * @return the reduced set of item sets */ public static FastVector deleteItemSets(FastVector itemSets, int minSupport, int maxSupport) { FastVector newVector = new FastVector(itemSets.size()); for (int i = 0; i < itemSets.size(); i++) { ItemSet current = (ItemSet)itemSets.elementAt(i); if ((current.m_counter >= minSupport) && (current.m_counter <= maxSupport)) newVector.addElement(current); } return newVector; } /** * Tests if two item sets are equal. * * @param itemSet another item set * @return true if this item set contains the same items as the given one */ public final boolean equals(Object itemSet) { if ((itemSet == null) || !(itemSet.getClass().equals(this.getClass()))) { return false; } if (m_items.length != ((ItemSet)itemSet).m_items.length) return false; for (int i = 0; i < m_items.length; i++) if (m_items[i] != ((ItemSet)itemSet).m_items[i]) return false; return true; } /** * Generates all rules for an item set. * * @param minConfidence the minimum confidence the rules have to have * @param hashtables containing all(!) previously generated * item sets * @param numItemsInSet the size of the item set for which the rules * are to be generated * @return all the rules with minimum confidence for the given item set */ public final FastVector[] generateRules(double minConfidence, FastVector hashtables, int numItemsInSet) { FastVector premises = new FastVector(),consequences = new FastVector(), conf = new FastVector(); FastVector[] rules = new FastVector[3], moreResults; ItemSet premise, consequence; Hashtable hashtable = (Hashtable)hashtables.elementAt(numItemsInSet - 2); // Generate all rules with one item in the consequence. for (int i = 0; i < m_items.length; i++) if (m_items[i] != -1) { premise = new ItemSet(m_totalTransactions); consequence = new ItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; consequence.m_items = new int[m_items.length]; consequence.m_counter = m_counter; for (int j = 0; j < m_items.length; j++) consequence.m_items[j] = -1; System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length); premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; premise.m_counter = ((Integer)hashtable.get(premise)).intValue(); premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(confidenceForRule(premise, consequence))); } rules[0] = premises; rules[1] = consequences; rules[2] = conf; pruneRules(rules, minConfidence); // Generate all the other rules moreResults = moreComplexRules(rules, numItemsInSet, 1, minConfidence, hashtables); if (moreResults != null) for (int i = 0; i < moreResults[0].size(); i++) { rules[0].addElement(moreResults[0].elementAt(i)); rules[1].addElement(moreResults[1].elementAt(i)); rules[2].addElement(moreResults[2].elementAt(i)); } return rules; } /** * Generates all significant rules for an item set. * * @param minMetric the minimum metric (confidence, lift, leverage, * improvement) the rules have to have * @param metricType (confidence=0, lift, leverage, improvement) * @param hashtables containing all(!) previously generated * item sets * @param numItemsInSet the size of the item set for which the rules * are to be generated * @param the significance level for testing the rules * @return all the rules with minimum metric for the given item set * @exception Exception if something goes wrong */ public final FastVector[] generateRulesBruteForce(double minMetric, int metricType, FastVector hashtables, int numItemsInSet, int numTransactions, double significanceLevel) throws Exception { FastVector premises = new FastVector(),consequences = new FastVector(), conf = new FastVector(), lift = new FastVector(), lev = new FastVector(), conv = new FastVector(); FastVector[] rules = new FastVector[6]; ItemSet premise, consequence; Hashtable hashtableForPremise, hashtableForConsequence; int numItemsInPremise, help, max, consequenceUnconditionedCounter; double[][] contingencyTable = new double[2][2]; double metric, chiSquared; // Generate all possible rules for this item set and test their // significance. max = (int)Math.pow(2, numItemsInSet); for (int j = 1; j < max; j++) { numItemsInPremise = 0; help = j; while (help > 0) { if (help % 2 == 1) numItemsInPremise++; help /= 2; } if (numItemsInPremise < numItemsInSet) { hashtableForPremise = (Hashtable)hashtables.elementAt(numItemsInPremise-1); hashtableForConsequence = (Hashtable)hashtables.elementAt(numItemsInSet-numItemsInPremise-1); premise = new ItemSet(m_totalTransactions); consequence = new ItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; consequence.m_items = new int[m_items.length]; consequence.m_counter = m_counter; help = j; for (int i = 0; i < m_items.length; i++) if (m_items[i] != -1) { if (help % 2 == 1) { premise.m_items[i] = m_items[i]; consequence.m_items[i] = -1; } else { premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; } help /= 2; } else { premise.m_items[i] = -1; consequence.m_items[i] = -1; } premise.m_counter = ((Integer)hashtableForPremise.get(premise)).intValue(); consequenceUnconditionedCounter = ((Integer)hashtableForConsequence.get(consequence)).intValue(); if (metricType == 0) { contingencyTable[0][0] = (double)(consequence.m_counter); contingencyTable[0][1] = (double)(premise.m_counter - consequence.m_counter); contingencyTable[1][0] = (double)(consequenceUnconditionedCounter - consequence.m_counter); contingencyTable[1][1] = (double)(numTransactions - premise.m_counter - consequenceUnconditionedCounter + consequence.m_counter); chiSquared = ContingencyTables.chiSquared(contingencyTable, false); metric = confidenceForRule(premise, consequence); if ((!(metric < minMetric)) && (!(chiSquared > significanceLevel))) { premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(metric)); lift.addElement(new Double(liftForRule(premise, consequence, consequenceUnconditionedCounter))); lev.addElement(new Double(leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); conv.addElement(new Double(convictionForRule(premise, consequence, premise.m_counter,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -