📄 contingencytables.java
字号:
if (Utils.eq(total, 0)) { return 0; } return (returnValue + lnFunc(total)) / (total * log2); } /** * Computes gain ratio for contingency table (split on rows). * Returns Double.MAX_VALUE if the split entropy is 0. * * @param matrix the contingency table * @return the gain ratio */ public static double gainRatio(double[][] matrix){ double preSplit = 0, postSplit = 0, splitEnt = 0, sumForRow, sumForColumn, total = 0, infoGain; // Compute entropy before split for (int i = 0; i < matrix[0].length; i++) { sumForColumn = 0; for (int j = 0; j < matrix.length; j++) sumForColumn += matrix[j][i]; preSplit += lnFunc(sumForColumn); total += sumForColumn; } preSplit -= lnFunc(total); // Compute entropy after split and split entropy for (int i = 0; i < matrix.length; i++) { sumForRow = 0; for (int j = 0; j < matrix[0].length; j++) { postSplit += lnFunc(matrix[i][j]); sumForRow += matrix[i][j]; } splitEnt += lnFunc(sumForRow); } postSplit -= splitEnt; splitEnt -= lnFunc(total); infoGain = preSplit - postSplit; if (Utils.eq(splitEnt, 0)) return 0; return infoGain / splitEnt; } /** * Returns negative base 2 logarithm of multiple hypergeometric * probability for a contingency table. * * @param matrix the contingency table * @return the log of the hypergeometric probability of the contingency table */ public static double log2MultipleHypergeometric(double[][] matrix) { double sum = 0, sumForRow, sumForColumn, total = 0; for (int i = 0; i < matrix.length; i++) { sumForRow = 0; for (int j = 0; j < matrix[i].length; j++) { sumForRow += matrix[i][j]; } sum += SpecialFunctions.lnFactorial(sumForRow); total += sumForRow; } for (int j = 0; j < matrix[0].length; j++) { sumForColumn = 0; for (int i = 0; i < matrix.length; i++) { sumForColumn += matrix [i][j]; } sum += SpecialFunctions.lnFactorial(sumForColumn); } for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { sum -= SpecialFunctions.lnFactorial(matrix[i][j]); } } sum -= SpecialFunctions.lnFactorial(total); return -sum / log2; } /** * Reduces a matrix by deleting all zero rows and columns. * * @param matrix the matrix to be reduced * @param the matrix with all zero rows and columns deleted */ public static double[][] reduceMatrix(double[][] matrix) { int row, col, currCol, currRow, nrows, ncols, nonZeroRows = 0, nonZeroColumns = 0; double[] rtotal, ctotal; double[][] newMatrix; nrows = matrix.length; ncols = matrix[0].length; rtotal = new double [nrows]; ctotal = new double [ncols]; for (row = 0; row < nrows; row++) { for (col = 0; col < ncols; col++) { rtotal[row] += matrix[row][col]; ctotal[col] += matrix[row][col]; } } for (row = 0; row < nrows; row++) { if (Utils.gr(rtotal[row],0)) { nonZeroRows++; } } for (col = 0; col < ncols; col++) { if (Utils.gr(ctotal[col],0)) { nonZeroColumns++; } } newMatrix = new double[nonZeroRows][nonZeroColumns]; currRow = 0; for (row = 0; row < nrows; row++) { if (Utils.gr(rtotal[row],0)) { currCol = 0; for (col = 0; col < ncols; col++) { if (Utils.gr(ctotal[col],0)) { newMatrix[currRow][currCol] = matrix[row][col]; currCol++; } } currRow++; } } return newMatrix; } /** * Calculates the symmetrical uncertainty for base 2. * * @param matrix the contingency table * @return the calculated symmetrical uncertainty * */ public static double symmetricalUncertainty(double matrix[][]) { double sumForColumn, sumForRow, total = 0, columnEntropy = 0, rowEntropy = 0, entropyConditionedOnRows = 0, infoGain = 0; // Compute entropy for columns for (int i = 0; i < matrix[0].length; i++) { sumForColumn = 0; for (int j = 0; j < matrix.length; j++) { sumForColumn += matrix[j][i]; } columnEntropy += lnFunc(sumForColumn); total += sumForColumn; } columnEntropy -= lnFunc(total); // Compute entropy for rows and conditional entropy for (int i = 0; i < matrix.length; i++) { sumForRow = 0; for (int j = 0; j < matrix[0].length; j++) { sumForRow += matrix[i][j]; entropyConditionedOnRows += lnFunc(matrix[i][j]); } rowEntropy += lnFunc(sumForRow); } entropyConditionedOnRows -= rowEntropy; rowEntropy -= lnFunc(total); infoGain = columnEntropy - entropyConditionedOnRows; if (Utils.eq(columnEntropy, 0) || Utils.eq(rowEntropy, 0)) return 0; return 2.0 * (infoGain / (columnEntropy + rowEntropy)); } /** * Computes Goodman and Kruskal's tau-value for a contingency table. * * @param matrix the contingency table * @param Goodman and Kruskal's tau-value */ public static double tauVal(double[][] matrix) { int nrows, ncols, row, col; double [] ctotal; double maxcol = 0, max, maxtotal = 0, n = 0; nrows = matrix.length; ncols = matrix[0].length; ctotal = new double [ncols]; for (row = 0; row < nrows; row++) { max = 0; for (col = 0; col < ncols; col++) { if (Utils.gr(matrix[row][col], max)) max = matrix[row][col]; ctotal[col] += matrix[row][col]; n += matrix[row][col]; } maxtotal += max; } if (Utils.eq(n, 0)) { return 0; } maxcol = ctotal[Utils.maxIndex(ctotal)]; return (maxtotal - maxcol)/(n - maxcol); } /** * Help method for computing entropy. */ private static double lnFunc(double num){ // Constant hard coded for efficiency reasons if (num < 1e-6) { return 0; } else { return num * Math.log(num); } } /** * Computes chi-value for one cell in a contingency table. * * @param freq the observed frequency in the cell * @param expected the expected frequency in the cell * @return the chi-value for that cell; 0 if the expected value is * too close to zero */ private static double chiCell(double freq, double expected, boolean yates){ // Cell in empty row and column? if (Utils.smOrEq(expected, 0)) { return 0; } // Compute difference between observed and expected value double diff = Math.abs(freq - expected); if (yates) { // Apply Yates' correction if wanted diff -= 0.5; // The difference should never be negative if (diff < 0) { diff = 0; } } // Return chi-value for the cell return (diff * diff / expected); } /** * Main method for testing this class. */ public static void main(String[] ops) { double[] firstRow = {10, 5, 20}; double[] secondRow = {2, 10, 6}; double[] thirdRow = {5, 10, 10}; double[][] matrix = new double[3][0]; matrix[0] = firstRow; matrix[1] = secondRow; matrix[2] = thirdRow; for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { System.out.print(matrix[i][j] + " "); } System.out.println(); } System.out.println("Chi-squared probability: " + ContingencyTables.chiSquared(matrix, false)); System.out.println("Chi-squared value: " + ContingencyTables.chiVal(matrix, false)); System.out.println("Cochran's criterion fullfilled: " + ContingencyTables.cochransCriterion(matrix)); System.out.println("Cramer's V: " + ContingencyTables.CramersV(matrix)); System.out.println("Entropy of first row: " + ContingencyTables.entropy(firstRow)); System.out.println("Entropy conditioned on columns: " + ContingencyTables.entropyConditionedOnColumns(matrix)); System.out.println("Entropy conditioned on rows: " + ContingencyTables.entropyConditionedOnRows(matrix)); System.out.println("Entropy conditioned on rows (with Laplace): " + ContingencyTables.entropyConditionedOnRows(matrix, matrix, 3)); System.out.println("Entropy of rows: " + ContingencyTables.entropyOverRows(matrix)); System.out.println("Entropy of columns: " + ContingencyTables.entropyOverColumns(matrix)); System.out.println("Gain ratio: " + ContingencyTables.gainRatio(matrix)); System.out.println("Negative log2 of multiple hypergeometric probability: " + ContingencyTables.log2MultipleHypergeometric(matrix)); System.out.println("Symmetrical uncertainty: " + ContingencyTables.symmetricalUncertainty(matrix)); System.out.println("Tau value: " + ContingencyTables.tauVal(matrix)); double[][] newMatrix = new double[3][3]; newMatrix[0][0] = 1; newMatrix[0][1] = 0; newMatrix[0][2] = 1; newMatrix[1][0] = 0; newMatrix[1][1] = 0; newMatrix[1][2] = 0; newMatrix[2][0] = 1; newMatrix[2][1] = 0; newMatrix[2][2] = 1; System.out.println("Matrix with empty row and column: "); for (int i = 0; i < newMatrix.length; i++) { for (int j = 0; j < newMatrix[i].length; j++) { System.out.print(newMatrix[i][j] + " "); } System.out.println(); } System.out.println("Reduced matrix: "); newMatrix = ContingencyTables.reduceMatrix(newMatrix); for (int i = 0; i < newMatrix.length; i++) { for (int j = 0; j < newMatrix[i].length; j++) { System.out.print(newMatrix[i][j] + " "); } System.out.println(); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -