⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 randompairwiseselector.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    RandomPairwiseSelector.java *    Copyright (C) 2002 Mikhail Bilenko * */package weka.core.metrics;import java.util.*;import java.io.Serializable;import weka.core.*;/**  *  RandomPairwiseSelector class.  Given a metric and training data, * create a set of random instance pairs that correspond to metric training data * * @author Mikhail Bilenko (mbilenko@cs.utexas.edu) * @version $Revision: 1.1 $ */public class RandomPairwiseSelector extends PairwiseSelector  implements Serializable, OptionHandler {  /** A default constructor */  public RandomPairwiseSelector() {  }   /**   * Provide an array of metric pairs metric using given training instances   *   * @param metric the metric to train   * @param instances data to train the metric on   * @exception Exception if training has gone bad.   */  public ArrayList createPairList(Instances instances, int numPosPairs, int numNegPairs, Metric metric) throws Exception {    ArrayList pairList = new ArrayList();    initSelector(instances);    // go through lists of instances for each class and create a list of *all* positive pairs    ArrayList posPairList = new ArrayList();    Iterator iterator = m_classInstanceMap.values().iterator();    while (iterator.hasNext()) {      ArrayList instanceList = (ArrayList) iterator.next();      for (int i = 0; i < instanceList.size(); i++) {	Instance instance1 = (Instance) instanceList.get(i);	for (int j = i+1; j < instanceList.size(); j++) {	  Instance instance2 = (Instance) instanceList.get(j);	  TrainingPair pair = new TrainingPair(instance1, instance2, true, metric.distance(instance1, instance2));	  posPairList.add(pair);	}       }     }    // if we have fewer pairs available than requested, return all the ones that were created    if (posPairList.size() <= numPosPairs) {      pairList = posPairList;    } else { // randomly sample with replacement      Random random = new Random();      for (int i = 0; i < numPosPairs; i++) {	int idx = random.nextInt(posPairList.size());	TrainingPair pair = (TrainingPair) posPairList.remove(idx);	pairList.add(pair);      }    }    // Analogously, create all negative pairs and sample randomly    ArrayList negPairList = new ArrayList();    // go through lists of instances for each class    for (int i = 0; i < m_classValueList.size(); i++) {      ArrayList instanceList1 = (ArrayList) m_classInstanceMap.get(m_classValueList.get(i));      for (int j = 0; j < instanceList1.size(); j++) {	Instance instance1 = (Instance) instanceList1.get(j);	for (int k = i+1; k < m_classValueList.size(); k++) {	  ArrayList instanceList2 = (ArrayList) m_classInstanceMap.get(m_classValueList.get(k));	  for (int l = 0; l < instanceList2.size(); l++) {	    Instance instance2 = (Instance) instanceList2.get(l);	    TrainingPair pair = new TrainingPair(instance1, instance2, false, metric.distance(instance1, instance2));	    negPairList.add(pair);	  }	}      }    }        // if we have fewer pairs available than requested, return all the ones that were created    if (negPairList.size() <= numNegPairs) {      pairList.addAll(negPairList);    } else { // randomly sample with replacement      Random random = new Random();      for (int i = 0; i < numNegPairs; i++) {	int idx = random.nextInt(negPairList.size());	TrainingPair pair = (TrainingPair) negPairList.remove(idx);	pairList.add(pair);      }    }    return pairList;  }     /**   * Gets the current settings of WeightedDotP.   *   * @return an array of strings suitable for passing to setOptions()   */  public String [] getOptions() {    String [] options = new String [1];    int current = 0;    while (current < options.length) {      options[current++] = "";    }    return options;  }    /**   * Parses a given list of options. Valid options are:<p>   *   */  public void setOptions(String[] options) throws Exception {  }    /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {     Vector newVector = new Vector(0);    return newVector.elements();  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -