📄 classifiersplitevaluator.java
字号:
resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // IR stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = doub; // Timing stats resultTypes[current++] = doub; resultTypes[current++] = doub; resultTypes[current++] = ""; // add any additional measures for (int i=0;i<addm;i++) { resultTypes[current++] = doub; } if (current != overall_length) { throw new Error("ResultTypes didn't fit RESULT_SIZE"); } return resultTypes; } /** * Gets the names of each of the result columns produced for a single run. * The number of result fields must be constant * for a given SplitEvaluator. * * @return an array containing the name of each result column */ public String [] getResultNames() { int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE+addm; overall_length += NUM_IR_STATISTICS; String [] resultNames = new String[overall_length]; int current = 0; resultNames[current++] = "Number_of_instances"; // Basic performance stats - right vs wrong resultNames[current++] = "Number_correct"; resultNames[current++] = "Number_incorrect"; resultNames[current++] = "Number_unclassified"; resultNames[current++] = "Percent_correct"; resultNames[current++] = "Percent_incorrect"; resultNames[current++] = "Percent_unclassified"; resultNames[current++] = "Kappa_statistic"; // Sensitive stats - certainty of predictions resultNames[current++] = "Mean_absolute_error"; resultNames[current++] = "Root_mean_squared_error"; resultNames[current++] = "Relative_absolute_error"; resultNames[current++] = "Root_relative_squared_error"; // SF stats resultNames[current++] = "SF_prior_entropy"; resultNames[current++] = "SF_scheme_entropy"; resultNames[current++] = "SF_entropy_gain"; resultNames[current++] = "SF_mean_prior_entropy"; resultNames[current++] = "SF_mean_scheme_entropy"; resultNames[current++] = "SF_mean_entropy_gain"; // K&B stats resultNames[current++] = "KB_information"; resultNames[current++] = "KB_mean_information"; resultNames[current++] = "KB_relative_information"; // IR stats resultNames[current++] = "True_positive_rate"; resultNames[current++] = "Num_true_positives"; resultNames[current++] = "False_positive_rate"; resultNames[current++] = "Num_false_positives"; resultNames[current++] = "True_negative_rate"; resultNames[current++] = "Num_true_negatives"; resultNames[current++] = "False_negative_rate"; resultNames[current++] = "Num_false_negatives"; resultNames[current++] = "IR_precision"; resultNames[current++] = "IR_recall"; resultNames[current++] = "F_measure"; // Timing stats resultNames[current++] = "Time_training"; resultNames[current++] = "Time_testing"; // Classifier defined extras resultNames[current++] = "Summary"; // add any additional measures for (int i=0;i<addm;i++) { resultNames[current++] = m_AdditionalMeasures[i]; } if (current != overall_length) { throw new Error("ResultNames didn't fit RESULT_SIZE"); } return resultNames; } /** * Gets the results for the supplied train and test datasets. * * @param train the training Instances. * @param test the testing Instances. * @return the results stored in an array. The objects stored in * the array may be Strings, Doubles, or null (for the missing value). * @exception Exception if a problem occurs while getting the results */ public Object [] getResult(Instances train, Instances test) throws Exception { if (train.classAttribute().type() != Attribute.NOMINAL) { throw new Exception("Class attribute is not nominal!"); } if (m_Classifier == null) { throw new Exception("No classifier has been specified"); } int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; int overall_length = RESULT_SIZE+addm; overall_length += NUM_IR_STATISTICS; Object [] result = new Object[overall_length]; Evaluation eval = new Evaluation(train); long trainTimeStart = System.currentTimeMillis(); m_Classifier.buildClassifier(train); long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; long testTimeStart = System.currentTimeMillis(); eval.evaluateModel(m_Classifier, test); long testTimeElapsed = System.currentTimeMillis() - testTimeStart; m_result = eval.toSummaryString(); // The results stored are all per instance -- can be multiplied by the // number of instances to get absolute numbers int current = 0; result[current++] = new Double(eval.numInstances()); result[current++] = new Double(eval.correct()); result[current++] = new Double(eval.incorrect()); result[current++] = new Double(eval.unclassified()); result[current++] = new Double(eval.pctCorrect()); result[current++] = new Double(eval.pctIncorrect()); result[current++] = new Double(eval.pctUnclassified()); result[current++] = new Double(eval.kappa()); result[current++] = new Double(eval.meanAbsoluteError()); result[current++] = new Double(eval.rootMeanSquaredError()); result[current++] = new Double(eval.relativeAbsoluteError()); result[current++] = new Double(eval.rootRelativeSquaredError()); result[current++] = new Double(eval.SFPriorEntropy()); result[current++] = new Double(eval.SFSchemeEntropy()); result[current++] = new Double(eval.SFEntropyGain()); result[current++] = new Double(eval.SFMeanPriorEntropy()); result[current++] = new Double(eval.SFMeanSchemeEntropy()); result[current++] = new Double(eval.SFMeanEntropyGain()); // K&B stats result[current++] = new Double(eval.KBInformation()); result[current++] = new Double(eval.KBMeanInformation()); result[current++] = new Double(eval.KBRelativeInformation()); // IR stats result[current++] = new Double(eval.truePositiveRate(m_IRclass)); result[current++] = new Double(eval.numTruePositives(m_IRclass)); result[current++] = new Double(eval.falsePositiveRate(m_IRclass)); result[current++] = new Double(eval.numFalsePositives(m_IRclass)); result[current++] = new Double(eval.trueNegativeRate(m_IRclass)); result[current++] = new Double(eval.numTrueNegatives(m_IRclass)); result[current++] = new Double(eval.falseNegativeRate(m_IRclass)); result[current++] = new Double(eval.numFalseNegatives(m_IRclass)); result[current++] = new Double(eval.precision(m_IRclass)); result[current++] = new Double(eval.recall(m_IRclass)); result[current++] = new Double(eval.fMeasure(m_IRclass)); // Timing stats result[current++] = new Double(trainTimeElapsed / 1000.0); result[current++] = new Double(testTimeElapsed / 1000.0); if (m_Classifier instanceof Summarizable) { result[current++] = ((Summarizable)m_Classifier).toSummaryString(); } else { result[current++] = null; } for (int i=0;i<addm;i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer)m_Classifier). getMeasure(m_AdditionalMeasures[i]); Double value = new Double(dv); result[current++] = value; } catch (Exception ex) { System.err.println(ex); } } else { result[current++] = null; } } if (current != overall_length) { throw new Error("Results didn't fit RESULT_SIZE"); } return result; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classifierTipText() { return "The classifier to use."; } /** * Get the value of Classifier. * * @return Value of Classifier. */ public Classifier getClassifier() { return m_Classifier; } /** * Sets the classifier. * * @param newClassifier the new classifier to use. */ public void setClassifier(Classifier newClassifier) { m_Classifier = newClassifier; updateOptions(); System.err.println("ClassifierSplitEvaluator: In set classifier"); } /** * Get the value of ClassForIRStatistics. * @return Value of ClassForIRStatistics. */ public int getClassForIRStatistics() { return m_IRclass; } /** * Set the value of ClassForIRStatistics. * @param v Value to assign to ClassForIRStatistics. */ public void setClassForIRStatistics(int v) { m_IRclass = v; } /** * Updates the options that the current classifier is using. */ protected void updateOptions() { if (m_Classifier instanceof OptionHandler) { m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Classifier) .getOptions()); } else { m_ClassifierOptions = ""; } if (m_Classifier instanceof Serializable) { ObjectStreamClass obs = ObjectStreamClass.lookup(m_Classifier .getClass()); m_ClassifierVersion = "" + obs.getSerialVersionUID(); } else { m_ClassifierVersion = ""; } } /** * Set the Classifier to use, given it's class name. A new classifier will be * instantiated. * * @param newClassifier the Classifier class name. * @exception Exception if the class name is invalid. */ public void setClassifierName(String newClassifierName) throws Exception { try { setClassifier((Classifier)Class.forName(newClassifierName) .newInstance()); } catch (Exception ex) { throw new Exception("Can't find Classifier with class name: " + newClassifierName); } } /** * Gets the raw output from the classifier * @return the raw output from the classifier */ public String getRawResultOutput() { StringBuffer result = new StringBuffer(); if (m_Classifier == null) { return "<null> classifier"; } result.append(toString()); result.append("Classifier model: \n"+m_Classifier.toString()+'\n'); // append the performance statistics if (m_result != null) { result.append(m_result); if (m_doesProduce != null) { for (int i=0;i<m_doesProduce.length;i++) { if (m_doesProduce[i]) { try { double dv = ((AdditionalMeasureProducer)m_Classifier). getMeasure(m_AdditionalMeasures[i]); Double value = new Double(dv); result.append(m_AdditionalMeasures[i]+" : "+value+'\n'); } catch (Exception ex) { System.err.println(ex); } } } } } return result.toString(); } /** * Returns a text description of the split evaluator. * * @return a text description of the split evaluator. */ public String toString() { String result = "ClassifierSplitEvaluator: "; if (m_Classifier == null) { return result + "<null> classifier"; } return result + m_Classifier.getClass().getName() + " " + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; }} // ClassifierSplitEvaluator
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -