⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classifiersplitevaluator.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ClassifierSplitEvaluator.java *    Copyright (C) 1999 Len Trigg * */package weka.experiment;import java.io.*;import java.util.*;import weka.core.*;import weka.classifiers.*;import weka.classifiers.rules.ZeroR;/** * A SplitEvaluator that produces results for a classification scheme * on a nominal class attribute. * * -W classname <br> * Specify the full class name of the classifier to evaluate. <p> * * -C class index <br> * The index of the class for which IR statistics are to * be output. (default 1) <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class ClassifierSplitEvaluator implements SplitEvaluator,   OptionHandler, AdditionalMeasureProducer {    /** The classifier used for evaluation */  protected Classifier m_Classifier = new ZeroR();  /** The names of any additional measures to look for in SplitEvaluators */  protected String [] m_AdditionalMeasures = null;  /** Array of booleans corresponding to the measures in m_AdditionalMeasures      indicating which of the AdditionalMeasures the current classifier      can produce */  protected boolean [] m_doesProduce = null;  /** The number of additional measures that need to be filled in      after taking into account column constraints imposed by the final      destination for results */  protected int m_numberAdditionalMeasures = 0;  /** Holds the statistics for the most recent application of the classifier */  protected String m_result = null;  /** The classifier options (if any) */  protected String m_ClassifierOptions = "";  /** The classifier version */  protected String m_ClassifierVersion = "";  /** The length of a key */  private static final int KEY_SIZE = 3;  /** The length of a result */  private static final int RESULT_SIZE = 24;  /** The number of IR statistics */  private static final int NUM_IR_STATISTICS = 11;  /** Class index for information retrieval statistics (default 0) */  private int m_IRclass = 0;  /**   * No args constructor.   */  public ClassifierSplitEvaluator() {    updateOptions();  }  /**   * Returns a string describing this split evaluator   * @return a description of the split evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return " A SplitEvaluator that produces results for a classification "      +"scheme on a nominal class attribute.";  }  /**   * Returns an enumeration describing the available options..   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(2);    newVector.addElement(new Option(	     "\tThe full class name of the classifier.\n"	      +"\teg: weka.classifiers.bayes.NaiveBayes", 	     "W", 1, 	     "-W <class name>"));    newVector.addElement(new Option(	     "\tThe index of the class for which IR statistics\n" +	     "\tare to be output. (default 1)",	     "C", 1, 	     "-C <index>"));    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      newVector.addElement(new Option(	     "",	     "", 0, "\nOptions specific to classifier "	     + m_Classifier.getClass().getName() + ":"));      Enumeration enum = ((OptionHandler)m_Classifier).listOptions();      while (enum.hasMoreElements()) {	newVector.addElement(enum.nextElement());      }    }    return newVector.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   * -W classname <br>   * Specify the full class name of the classifier to evaluate. <p>   *   * -C class index <br>   * The index of the class for which IR statistics are to   * be output. (default 1) <p>   *   * All option after -- will be passed to the classifier.   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String cName = Utils.getOption('W', options);    if (cName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    // Do it first without options, so if an exception is thrown during    // the option setting, listOptions will contain options for the actual    // Classifier.    setClassifier(Classifier.forName(cName, null));    if (getClassifier() instanceof OptionHandler) {      ((OptionHandler) getClassifier())	.setOptions(Utils.partitionOptions(options));      updateOptions();    }    String indexName = Utils.getOption('C', options);    if (indexName.length() != 0) {      m_IRclass = (new Integer(indexName)).intValue() - 1;    } else {      m_IRclass = 0;    }  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] classifierOptions = new String [0];    if ((m_Classifier != null) && 	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }        String [] options = new String [classifierOptions.length + 5];    int current = 0;    if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "-C";     options[current++] = "" + (m_IRclass + 1);    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Set a list of method names for additional measures to look for   * in Classifiers. This could contain many measures (of which only a   * subset may be produceable by the current Classifier) if an experiment   * is the type that iterates over a set of properties.   * @param additionalMeasures a list of method names   */  public void setAdditionalMeasures(String [] additionalMeasures) {    System.err.println("ClassifierSplitEvaluator: setting additional measures");      m_AdditionalMeasures = additionalMeasures;        // determine which (if any) of the additional measures this classifier    // can produce    if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) {      m_doesProduce = new boolean [m_AdditionalMeasures.length];      if (m_Classifier instanceof AdditionalMeasureProducer) {	Enumeration en = ((AdditionalMeasureProducer)m_Classifier).	  enumerateMeasures();	while (en.hasMoreElements()) {	  String mname = (String)en.nextElement();	  for (int j=0;j<m_AdditionalMeasures.length;j++) {	    if (mname.compareTo(m_AdditionalMeasures[j]) == 0) {	      m_doesProduce[j] = true;	    }	  }	}      }    } else {      m_doesProduce = null;    }  }  /**   * Returns an enumeration of any additional measure names that might be   * in the classifier   * @return an enumeration of the measure names   */  public Enumeration enumerateMeasures() {    Vector newVector = new Vector();    if (m_Classifier instanceof AdditionalMeasureProducer) {      Enumeration en = ((AdditionalMeasureProducer)m_Classifier).	enumerateMeasures();      while (en.hasMoreElements()) {	String mname = (String)en.nextElement();	newVector.addElement(mname);      }    }    return newVector.elements();  }    /**   * Returns the value of the named measure   * @param measureName the name of the measure to query for its value   * @return the value of the named measure   * @exception IllegalArgumentException if the named measure is not supported   */  public double getMeasure(String additionalMeasureName) {    if (m_Classifier instanceof AdditionalMeasureProducer) {      return ((AdditionalMeasureProducer)m_Classifier).	getMeasure(additionalMeasureName);    } else {      throw new IllegalArgumentException("ClassifierSplitEvaluator: "			  +"Can't return value for : "+additionalMeasureName			  +". "+m_Classifier.getClass().getName()+" "			  +"is not an AdditionalMeasureProducer");    }  }  /**   * Gets the data types of each of the key columns produced for a single run.   * The number of key fields must be constant   * for a given SplitEvaluator.   *   * @return an array containing objects of the type of each key column. The    * objects should be Strings, or Doubles.   */  public Object [] getKeyTypes() {    Object [] keyTypes = new Object[KEY_SIZE];    keyTypes[0] = "";    keyTypes[1] = "";    keyTypes[2] = "";    return keyTypes;  }  /**   * Gets the names of each of the key columns produced for a single run.   * The number of key fields must be constant   * for a given SplitEvaluator.   *   * @return an array containing the name of each key column   */  public String [] getKeyNames() {    String [] keyNames = new String[KEY_SIZE];    keyNames[0] = "Scheme";    keyNames[1] = "Scheme_options";    keyNames[2] = "Scheme_version_ID";    return keyNames;  }  /**   * Gets the key describing the current SplitEvaluator. For example   * This may contain the name of the classifier used for classifier   * predictive evaluation. The number of key fields must be constant   * for a given SplitEvaluator.   *   * @return an array of objects containing the key.   */  public Object [] getKey(){    Object [] key = new Object[KEY_SIZE];    key[0] = m_Classifier.getClass().getName();    key[1] = m_ClassifierOptions;    key[2] = m_ClassifierVersion;    return key;  }  /**   * Gets the data types of each of the result columns produced for a    * single run. The number of result fields must be constant   * for a given SplitEvaluator.   *   * @return an array containing objects of the type of each result column.    * The objects should be Strings, or Doubles.   */  public Object [] getResultTypes() {    int addm = (m_AdditionalMeasures != null)       ? m_AdditionalMeasures.length       : 0;    int overall_length = RESULT_SIZE+addm;    overall_length += NUM_IR_STATISTICS;    Object [] resultTypes = new Object[overall_length];    Double doub = new Double(0);    int current = 0;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -