⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 semisupcrossvalidationresultproducer.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
	    // Randomly shuffle stratified training set for fold: added by Sugato	    train.randomize(new Random(fold));	    	    Instances test = runInstances.testCV(m_NumFolds, fold);	    int pointNum = 0;	    // For each subsample size	    if (m_PlotPoints != null) {		m_CurrentSize = plotPoint(0);	    }	    else if (m_LowerSize == 0) {		m_CurrentSize = m_StepSize;	    } else {		m_CurrentSize = m_LowerSize;	    }	    while (m_CurrentSize <= maxTrainSize()) {		// Add in some fields to the key like run and fold number, dataset name		Object [] seKey = m_SplitEvaluator.getKey();		Object [] key = new Object [seKey.length + numExtraKeys];		key[0] = Utils.backQuoteChars(m_Instances.relationName());		key[1] = "" + run;		key[2] = "" + (fold + 1);		key[3] = "" + m_CurrentSize;		if(m_IsFraction) key[4] = "" + m_PlotPoints[pointNum];		System.arraycopy(seKey, 0, key, numExtraKeys, seKey.length);		if (m_ResultListener.isResultRequired(this, key)) {		    try {			if(m_IsFraction)			    System.out.println("Run:" + run + " Fold:" + fold + " Size:" + m_CurrentSize + " Fraction:" + m_PlotPoints[pointNum]);			else			    System.out.println("Run:" + run + " Fold:" + fold + " Size:" + m_CurrentSize);			Instances trainSubset = new Instances(train, 0, m_CurrentSize);			//Begin - PM			Instances unlabeledSet = new Instances(train, m_CurrentSize, train.numInstances()-m_CurrentSize);			removeLabels(unlabeledSet);			Object [] seResults = ((SemiSupSplitEvaluator) m_SplitEvaluator).getResult(trainSubset, unlabeledSet, test);			//End - PM			Object [] results = new Object [seResults.length + 1];			results[0] = getTimestamp();			System.arraycopy(seResults, 0, results, 1,					 seResults.length);			if (m_debugOutput) {			    String resultName = (""+run+"."+(fold+1)+"."+ m_CurrentSize + "." 						 + Utils.backQuoteChars(runInstances.relationName())						 +"."						 +m_SplitEvaluator.toString()).replace(' ','_');			    resultName = Utils.removeSubstring(resultName, 							       "weka.classifiers.");			    resultName = Utils.removeSubstring(resultName, 							       "weka.filters.");			    resultName = Utils.removeSubstring(resultName, 							       "weka.attributeSelection.");			    m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName);			}			m_ResultListener.acceptResult(this, key, results);		    } catch (Exception ex) {			// Save the train and test datasets for debugging purposes?			throw ex;		    }		}		if (m_PlotPoints != null) {		    pointNum ++;		    m_CurrentSize = plotPoint(pointNum);		}		else {		    m_CurrentSize += m_StepSize;		}	    }	}    }    /** Determines if the points specified are fractions of the total number of examples */    protected boolean setIsFraction(){	if (m_PlotPoints != null){	    if(!isInteger(m_PlotPoints[0]))//if the first point is not an integer		m_IsFraction = true;	    else		m_IsFraction = false;	}	return m_IsFraction;    }        /** Return the number of training examples for the ith point on the     * curve for plotPoints as specified.     */    protected int plotPoint(int i) {	// If i beyond number of given plot points return a value greater than maximum training size	if (i >= m_PlotPoints.length)	    return maxTrainSize() + 1;	double point = m_PlotPoints[i];	// If plot point is an integer (other than a non-initial 1)	// treat it as a specific number of examples	if (isInteger(point) && !(Utils.eq(point, 1.0) && i!=0))	    return (int)point;	else	    // Otherwise, treat it as a percentage of the full set	    return (int)Math.round(point * maxTrainSize());    }    /** Return true if the given double represents an integer value */    protected static boolean isInteger(double val) {	return Utils.eq(Math.floor(val), Math.ceil(val));    }    /**     * Gets the names of each of the columns produced for a single run.     * This method should really be static.     *     * @return an array containing the name of each column     */    public String [] getKeyNames() {	String [] keyNames = m_SplitEvaluator.getKeyNames();	// Add in the names of our extra key fields	int numExtraKeys;	if(m_IsFraction)	    numExtraKeys = 5;	else numExtraKeys = 4;	String [] newKeyNames = new String [keyNames.length + numExtraKeys];	newKeyNames[0] = DATASET_FIELD_NAME;	newKeyNames[1] = RUN_FIELD_NAME;	newKeyNames[2] = FOLD_FIELD_NAME;	newKeyNames[3] = STEP_FIELD_NAME;	if(m_IsFraction) newKeyNames[4] = FRACTION_FIELD_NAME;	System.arraycopy(keyNames, 0, newKeyNames, numExtraKeys, keyNames.length);	return newKeyNames;    }    /**     * Gets the data types of each of the columns produced for a single run.     * This method should really be static.     *     * @return an array containing objects of the type of each column. The      * objects should be Strings, or Doubles.     */    public Object [] getKeyTypes() {	Object [] keyTypes = m_SplitEvaluator.getKeyTypes();	int numExtraKeys;	if(m_IsFraction)	    numExtraKeys = 5;	else numExtraKeys = 4;	// Add in the types of our extra fields	Object [] newKeyTypes = new String [keyTypes.length + numExtraKeys];	newKeyTypes[0] = new String();	newKeyTypes[1] = new String();	newKeyTypes[2] = new String();	newKeyTypes[3] = new String();	if(m_IsFraction) newKeyTypes[4] = new String();	System.arraycopy(keyTypes, 0, newKeyTypes, numExtraKeys, keyTypes.length);	return newKeyTypes;    }    /**     * Gets the names of each of the columns produced for a single run.     * This method should really be static.     *     * @return an array containing the name of each column     */    public String [] getResultNames() {	String [] resultNames = m_SplitEvaluator.getResultNames();	// Add in the names of our extra Result fields	String [] newResultNames = new String [resultNames.length + 1];	newResultNames[0] = TIMESTAMP_FIELD_NAME;	System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length);	return newResultNames;    }    /**     * Gets the data types of each of the columns produced for a single run.     * This method should really be static.     *     * @return an array containing objects of the type of each column. The      * objects should be Strings, or Doubles.     */    public Object [] getResultTypes() {	Object [] resultTypes = m_SplitEvaluator.getResultTypes();	// Add in the types of our extra Result fields	Object [] newResultTypes = new Object [resultTypes.length + 1];	newResultTypes[0] = new Double(0);	System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length);	return newResultTypes;    }    /**     * Gets a description of the internal settings of the result     * producer, sufficient for distinguishing a ResultProducer     * instance from another with different settings (ignoring     * those settings set through this interface). For example,     * a cross-validation ResultProducer may have a setting for the     * number of folds. For a given state, the results produced should     * be compatible. Typically if a ResultProducer is an OptionHandler,     * this string will represent the command line arguments required     * to set the ResultProducer to that state.     *     * @return the description of the ResultProducer state, or null     * if no state is defined     */    public String getCompatibilityState() {	String result = "-X " + m_NumFolds + " -S " + getStepSize() + 	    " -L " + getLowerSize() + " -U " + getUpperSize() + " ";	if (m_SplitEvaluator == null) {	    result += "<null SplitEvaluator>";	} else {	    result += "-W " + m_SplitEvaluator.getClass().getName();	}	return result + " --";    }    /**     * Returns the tip text for this property     * @return tip text for this property suitable for     * displaying in the explorer/experimenter gui     */    public String outputFileTipText() {	return "Set the destination for saving raw output. If the rawOutput "	    +"option is selected, then output from the splitEvaluator for "	    +"individual folds is saved. If the destination is a directory, "	    +"then each output is saved to an individual gzip file; if the "	    +"destination is a file, then each output is saved as an entry "	    +"in a zip file.";    }    /**     * Get the value of OutputFile.     *     * @return Value of OutputFile.     */    public File getOutputFile() {    	return m_OutputFile;    }      /**     * Set the value of OutputFile.     *     * @param newOutputFile Value to assign to OutputFile.     */    public void setOutputFile(File newOutputFile) {    	m_OutputFile = newOutputFile;    }      /**     * Returns the tip text for this property     * @return tip text for this property suitable for     * displaying in the explorer/experimenter gui     */    public String numFoldsTipText() {	return "Number of folds to use in cross validation.";    }    /**     * Get the value of NumFolds.     *     * @return Value of NumFolds.     */    public int getNumFolds() {    	return m_NumFolds;    }      /**     * Set the value of NumFolds.     *     * @param newNumFolds Value to assign to NumFolds.     */    public void setNumFolds(int newNumFolds) {    	m_NumFolds = newNumFolds;    }    /**     * Returns the tip text for this property     * @return tip text for this property suitable for     * displaying in the explorer/experimenter gui     */    public String lowerSizeTipText() {	return "Set the minimum number of instances in a training set. Setting zero "            + "here will actually use <stepSize> number of instances at the first "            + "step (since performance at zero instances is predictable)";    }    /**     * Get the value of LowerSize.     *     * @return Value of LowerSize.     */    public int getLowerSize() {    	return m_LowerSize;    }      /**     * Set the value of LowerSize.     *     * @param newLowerSize Value to assign to     * LowerSize.     */    public void setLowerSize(int newLowerSize) {    	m_LowerSize = newLowerSize;    }    /**     * Returns the tip text for this property     * @return tip text for this property suitable for     * displaying in the explorer/experimenter gui     */    public String upperSizeTipText() {	return "Set the maximum number of instances in a training set. Setting -1 "	    + "sets no upper limit (other than the total number of instances "	    + "in the full training set)";    }    /**     * Get the value of UpperSize.     *     * @return Value of UpperSize.     */    public int getUpperSize() {    	return m_UpperSize;    }      /**     * Set the value of UpperSize.     *     * @param newUpperSize Value to assign to     * UpperSize.     */    public void setUpperSize(int newUpperSize) {    	m_UpperSize = newUpperSize;    }    /**     * Returns the tip text for this property     * @return tip text for this property suitable for     * displaying in the explorer/experimenter gui     */    public String stepSizeTipText() {	return "Set the number of instances to add to the training data at each step.";    }    /**     * Get the value of StepSize.     *     * @return Value of StepSize.     */    public int getStepSize() {    	return m_StepSize;    }      /**     * Set the value of StepSize.     *     * @param newStepSize Value to assign to     * StepSize.     */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -