📄 semisupcrossvalidationresultproducer.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * SemiSupCrossValidationResultProducer.java * Copyright (C) 2002 Prem Melville * */package weka.experiment;import java.util.*;import java.io.*;import weka.core.Instances;import weka.core.OptionHandler;import weka.core.Option;import weka.core.Utils;import weka.core.AdditionalMeasureProducer;/** * Does a N-fold cross-validation for semi-supervised learning * schemes. Creates a split that uses increasingly larger fractions of * the full training set as labeled data and uses the rest of the fold * as unlabeled data. This is useful in examining the effect of * increasing supervision in semi-supervised learning. * * @author Prem Melville */public class SemiSupCrossValidationResultProducer implements ResultProducer, OptionHandler, AdditionalMeasureProducer { /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The number of folds in the cross-validation */ protected int m_NumFolds = 10; /** Save raw output of split evaluators --- for debugging purposes */ protected boolean m_debugOutput = false; /** The output zipper to use for saving raw splitEvaluator output */ protected OutputZipper m_ZipDest = null; /** The destination output file/directory for raw output */ protected File m_OutputFile = new File( new File(System.getProperty("user.dir")), "splitEvalutorOut.zip"); /** The SplitEvaluator used to generate results */ protected SplitEvaluator m_SplitEvaluator = new SemiSupClassifierSplitEvaluator(); /** The names of any additional measures to look for in SplitEvaluators */ protected String [] m_AdditionalMeasures = null; /** * The minimum number of instances to use. If this is zero, the first * step will contain m_StepSize instances */ protected int m_LowerSize = 0; /** * The maximum number of instances to use. -1 indicates no maximum * (other than the total number of instances) */ protected int m_UpperSize = -1; /** The number of instances to add at each step */ protected int m_StepSize = 10; /** The specific points to plot, either integers representing specific numbers of training examples, * or decimal fractions representing percentages of the full training set*/ protected double[] m_PlotPoints; /** The current dataset size during stepping */ protected int m_CurrentSize = 0; /* The name of the key field containing the dataset name */ public static String DATASET_FIELD_NAME = "Dataset"; /* The name of the key field containing the run number */ public static String RUN_FIELD_NAME = "Run"; /* The name of the key field containing the fold number */ public static String FOLD_FIELD_NAME = "Fold"; /* The name of the result field containing the timestamp */ public static String TIMESTAMP_FIELD_NAME = "Date_time"; /* The name of the key field containing the learning rate step number */ public static String STEP_FIELD_NAME = "Total_instances"; /* The name of the key field containing the fraction of total instances used */ public static String FRACTION_FIELD_NAME = "Fraction_instances"; /* Indicates whether fractions or actual number of instances have been specified */ protected boolean m_IsFraction = false; /** * Returns a string describing this result producer * @return a description of the result producer suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Performs a learning-curve cross validation run using a supplied " +"split evaluator. Trains on increasing subsets of the training data for each split, " +"repeatedly testing on the test set for that split after training on subsets of various sizes."; } /** * Sets the dataset that results will be obtained for. * * @param instances a value of type 'Instances'. */ public void setInstances(Instances instances) { m_Instances = instances; } /** * Sets the object to send results of each run to. * * @param listener a value of type 'ResultListener' */ public void setResultListener(ResultListener listener) { m_ResultListener = listener; } /** * Set a list of method names for additional measures to look for * in SplitEvaluators. This could contain many measures (of which only a * subset may be produceable by the current SplitEvaluator) if an experiment * is the type that iterates over a set of properties. * @param additionalMeasures an array of measure names, null if none */ public void setAdditionalMeasures(String [] additionalMeasures) { m_AdditionalMeasures = additionalMeasures; if (m_SplitEvaluator != null) { System.err.println("SemiSupCrossValidationResultProducer: setting additional " +"measures for " +"split evaluator"); m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); } } /** * Returns an enumeration of any additional measure names that might be * in the SplitEvaluator * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(); if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_SplitEvaluator). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); newVector.addElement(mname); } } return newVector.elements(); } /** * Returns the value of the named measure * @param measureName the name of the measure to query for its value * @return the value of the named measure * @exception IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { return ((AdditionalMeasureProducer)m_SplitEvaluator). getMeasure(additionalMeasureName); } else { throw new IllegalArgumentException("SemiSupCrossValidationResultProducer: " +"Can't return value for : "+additionalMeasureName +". "+m_SplitEvaluator.getClass().getName()+" " +"is not an AdditionalMeasureProducer"); } } /** * Gets a Double representing the current date and time. * eg: 1:46pm on 20/5/1999 -> 19990520.1346 * * @return a value of type Double */ public static Double getTimestamp() { Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC")); double timestamp = now.get(Calendar.YEAR) * 10000 + (now.get(Calendar.MONTH) + 1) * 100 + now.get(Calendar.DAY_OF_MONTH) + now.get(Calendar.HOUR_OF_DAY) / 100.0 + now.get(Calendar.MINUTE) / 10000.0; return new Double(timestamp); } /** * Prepare to generate results. * * @exception Exception if an error occurs during preprocessing. */ public void preProcess() throws Exception { if (m_SplitEvaluator == null) { throw new Exception("No SplitEvalutor set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Perform any postprocessing. When this method is called, it indicates * that no more requests to generate results for the current experiment * will be sent. * * @exception Exception if an error occurs */ public void postProcess() throws Exception { m_ResultListener.postProcess(this); if (m_debugOutput) { if (m_ZipDest != null) { m_ZipDest.finished(); m_ZipDest = null; } } } /** * Gets the keys for a specified run number. Different run * numbers correspond to different randomizations of the data. Keys * produced should be sent to the current ResultListener * * @param run the run number to get keys for. * @exception Exception if a problem occurs while getting the keys */ public void doRunKeys(int run) throws Exception { int numExtraKeys; if(m_IsFraction) numExtraKeys = 5; else numExtraKeys = 4; if (m_Instances == null) { throw new Exception("No Instances set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } for (int fold = 0; fold < m_NumFolds; fold++) { int pointNum = 0; // For each subsample size if (m_PlotPoints != null) { m_CurrentSize = plotPoint(0); } else if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= maxTrainSize()) { // Add in some fields to the key like run and fold number, dataset name Object [] seKey = m_SplitEvaluator.getKey(); Object [] key = new Object [seKey.length + numExtraKeys]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; key[2] = "" + (fold + 1); key[3] = "" + m_CurrentSize; if(m_IsFraction) key[4] = "" + m_PlotPoints[pointNum]; System.arraycopy(seKey, 0, key, numExtraKeys, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } if (m_PlotPoints != null) { pointNum ++; m_CurrentSize = plotPoint(pointNum); } else { m_CurrentSize += m_StepSize; } } } } /** * Get the maximum size of the training set based on upperSize limit * or maximum training set size from the n-fold CV */ protected int maxTrainSize() { if (m_UpperSize == -1 || m_PlotPoints != null) return (int)(m_Instances.numInstances()*(1 - 1/((double)m_NumFolds))); else return m_UpperSize; } /** * Remove all class labels from given data. * @data instances to be used as unlabeled data */ protected void removeLabels(Instances data){ for(int i=0; i<data.numInstances(); i++) (data.instance(i)).setClassMissing(); } /** * Gets the results for a specified run number. Different run * numbers correspond to different randomizations of the data. Results * produced should be sent to the current ResultListener * * @param run the run number to get results for. * @exception Exception if a problem occurs while getting the results */ public void doRun(int run) throws Exception { int numExtraKeys; if(m_IsFraction) numExtraKeys = 5; else numExtraKeys = 4; if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); runInstances.randomize(new Random(run)); if (runInstances.classAttribute().isNominal()) { runInstances.stratify(m_NumFolds); } for (int fold = 0; fold < m_NumFolds; fold++) { Instances train = runInstances.trainCV(m_NumFolds, fold);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -