⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 costsensitiveclassifiersplitevaluator.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    CostSensitiveClassifierSplitEvaluator.java *    Copyright (C) 2002 University of Waikato * */package weka.experiment;import java.io.*;import java.util.*;import weka.core.*;import weka.classifiers.*;/** * A SplitEvaluator that produces results for a classification scheme * on a nominal class attribute, including weighted misclassification costs. * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 1.1.1.1 $ */public class CostSensitiveClassifierSplitEvaluator   extends ClassifierSplitEvaluator {     /**    * The directory used when loading cost files on demand, null indicates   * current directory    */  protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));  /** The length of a result */  private static final int RESULT_SIZE = 23;  /**   * Returns a string describing this split evaluator   * @return a description of the split evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return " SplitEvaluator that produces results for a classification scheme "      +"on a nominal class attribute, including weighted misclassification "      +"costs.";  }  /**   * Returns an enumeration describing the available options..   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(1);    Enumeration enum = super.listOptions();    while (enum.hasMoreElements()) {      newVector.addElement(enum.nextElement());    }    newVector.addElement(new Option(              "\tName of a directory to search for cost files when loading\n"              +"\tcosts on demand (default current directory).",              "D", 1, "-D <directory>"));    return newVector.elements();  }  /**   * Parses a given list of options. Valid options (in addition to those of   * ClassifierSplitEvaluator) are:<p>   *   * -D directory <br>   * Name of a directory to search for cost files when loading costs on demand   * (default current directory). <p>   *   * All option after -- will be passed to the classifier.   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String demandDir = Utils.getOption('D', options);    if (demandDir.length() != 0) {      setOnDemandDirectory(new File(demandDir));    }    super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] superOptions = super.getOptions();    String [] options = new String [superOptions.length + 3];    int current = 0;    options[current++] = "-D";    options[current++] = "" + getOnDemandDirectory();    System.arraycopy(superOptions, 0, options, current, 		     superOptions.length);    current += superOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String onDemandDirectoryTipText() {    return "The directory to look in for cost files. This directory will be "      +"searched for cost files when loading on demand.";  }  /**   * Returns the directory that will be searched for cost files when   * loading on demand.   *   * @return The cost file search directory.   */  public File getOnDemandDirectory() {    return m_OnDemandDirectory;  }  /**   * Sets the directory that will be searched for cost files when   * loading on demand.   *   * @param newDir The cost file search directory.   */  public void setOnDemandDirectory(File newDir) {    if (newDir.isDirectory()) {      m_OnDemandDirectory = newDir;    } else {      m_OnDemandDirectory = new File(newDir.getParent());    }  }  /**   * Gets the data types of each of the result columns produced for a    * single run. The number of result fields must be constant   * for a given SplitEvaluator.   *   * @return an array containing objects of the type of each result column.    * The objects should be Strings, or Doubles.   */  public Object [] getResultTypes() {    int addm = (m_AdditionalMeasures != null)       ? m_AdditionalMeasures.length       : 0;    Object [] resultTypes = new Object[RESULT_SIZE+addm];    Double doub = new Double(0);    int current = 0;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = doub;    resultTypes[current++] = "";    // add any additional measures    for (int i=0;i<addm;i++) {      resultTypes[current++] = doub;    }    if (current != RESULT_SIZE+addm) {      throw new Error("ResultTypes didn't fit RESULT_SIZE");    }    return resultTypes;  }  /**   * Gets the names of each of the result columns produced for a single run.   * The number of result fields must be constant   * for a given SplitEvaluator.   *   * @return an array containing the name of each result column   */  public String [] getResultNames() {    int addm = (m_AdditionalMeasures != null)       ? m_AdditionalMeasures.length       : 0;    String [] resultNames = new String[RESULT_SIZE+addm];    int current = 0;    resultNames[current++] = "Number_of_instances";    // Basic performance stats - right vs wrong    resultNames[current++] = "Number_correct";    resultNames[current++] = "Number_incorrect";    resultNames[current++] = "Number_unclassified";    resultNames[current++] = "Percent_correct";    resultNames[current++] = "Percent_incorrect";    resultNames[current++] = "Percent_unclassified";    resultNames[current++] = "Total_cost";    resultNames[current++] = "Average_cost";    // Sensitive stats - certainty of predictions    resultNames[current++] = "Mean_absolute_error";    resultNames[current++] = "Root_mean_squared_error";    resultNames[current++] = "Relative_absolute_error";    resultNames[current++] = "Root_relative_squared_error";    // SF stats    resultNames[current++] = "SF_prior_entropy";    resultNames[current++] = "SF_scheme_entropy";    resultNames[current++] = "SF_entropy_gain";    resultNames[current++] = "SF_mean_prior_entropy";    resultNames[current++] = "SF_mean_scheme_entropy";    resultNames[current++] = "SF_mean_entropy_gain";    // K&B stats    resultNames[current++] = "KB_information";    resultNames[current++] = "KB_mean_information";    resultNames[current++] = "KB_relative_information";    // Classifier defined extras    resultNames[current++] = "Summary";    // add any additional measures    for (int i=0;i<addm;i++) {      resultNames[current++] = m_AdditionalMeasures[i];    }    if (current != RESULT_SIZE+addm) {      throw new Error("ResultNames didn't fit RESULT_SIZE");    }    return resultNames;  }  /**   * Gets the results for the supplied train and test datasets.   *   * @param train the training Instances.   * @param test the testing Instances.   * @return the results stored in an array. The objects stored in   * the array may be Strings, Doubles, or null (for the missing value).   * @exception Exception if a problem occurs while getting the results   */  public Object [] getResult(Instances train, Instances test)     throws Exception {    if (train.classAttribute().type() != Attribute.NOMINAL) {      throw new Exception("Class attribute is not nominal!");    }    if (m_Classifier == null) {      throw new Exception("No classifier has been specified");    }    int addm = (m_AdditionalMeasures != null)       ? m_AdditionalMeasures.length       : 0;    Object [] result = new Object[RESULT_SIZE+addm];    String costName = train.relationName() + CostMatrix.FILE_EXTENSION;    File costFile = new File(getOnDemandDirectory(), costName);    if (!costFile.exists()) {      throw new Exception("On-demand cost file doesn't exist: " + costFile);    }    CostMatrix costMatrix = new CostMatrix(new BufferedReader(                                           new FileReader(costFile)));    Evaluation eval = new Evaluation(train, costMatrix);    m_Classifier.buildClassifier(train);    eval.evaluateModel(m_Classifier, test);    m_result = eval.toSummaryString();    // The results stored are all per instance -- can be multiplied by the    // number of instances to get absolute numbers    int current = 0;    result[current++] = new Double(eval.numInstances());    result[current++] = new Double(eval.correct());    result[current++] = new Double(eval.incorrect());    result[current++] = new Double(eval.unclassified());    result[current++] = new Double(eval.pctCorrect());    result[current++] = new Double(eval.pctIncorrect());    result[current++] = new Double(eval.pctUnclassified());    result[current++] = new Double(eval.totalCost());    result[current++] = new Double(eval.avgCost());    result[current++] = new Double(eval.meanAbsoluteError());    result[current++] = new Double(eval.rootMeanSquaredError());    result[current++] = new Double(eval.relativeAbsoluteError());    result[current++] = new Double(eval.rootRelativeSquaredError());    result[current++] = new Double(eval.SFPriorEntropy());    result[current++] = new Double(eval.SFSchemeEntropy());    result[current++] = new Double(eval.SFEntropyGain());    result[current++] = new Double(eval.SFMeanPriorEntropy());    result[current++] = new Double(eval.SFMeanSchemeEntropy());    result[current++] = new Double(eval.SFMeanEntropyGain());    // K&B stats    result[current++] = new Double(eval.KBInformation());    result[current++] = new Double(eval.KBMeanInformation());    result[current++] = new Double(eval.KBRelativeInformation());    if (m_Classifier instanceof Summarizable) {      result[current++] = ((Summarizable)m_Classifier).toSummaryString();    } else {      result[current++] = null;    }        for (int i=0;i<addm;i++) {      if (m_doesProduce[i]) {	try {	  double dv = ((AdditionalMeasureProducer)m_Classifier).	    getMeasure(m_AdditionalMeasures[i]);	  Double value = new Double(dv);	  result[current++] = value;	} catch (Exception ex) {	  System.err.println(ex);	}      } else {	result[current++] = null;      }    }    if (current != RESULT_SIZE+addm) {      throw new Error("Results didn't fit RESULT_SIZE");    }    return result;  }  /**   * Returns a text description of the split evaluator.   *   * @return a text description of the split evaluator.   */  public String toString() {    String result = "CostSensitiveClassifierSplitEvaluator: ";    if (m_Classifier == null) {      return result + "<null> classifier";    }    return result + m_Classifier.getClass().getName() + " "       + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")";  }} // CostSensitiveClassifierSplitEvaluator

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -