⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dedupingprcurvecvresultproducersplit.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    DedupingPRCurveCVResultProducer.java *    Copyright (c) 2003 Mikhail Bilenko * */package weka.experiment;import java.util.*;import java.io.*;import weka.core.*;import weka.core.OptionHandler;import weka.core.Option;import weka.core.Utils;import weka.core.AdditionalMeasureProducer;import weka.filters.Filter;import weka.filters.unsupervised.attribute.Remove;/** * N-fold cross-validation learning curve for * deduping applications * * @author Mikhail Bilenko */public class  DedupingPRCurveCVResultProducerSplit  implements ResultProducer, OptionHandler, AdditionalMeasureProducer {    /** The dataset of interest */  protected Instances m_instances;  /** SVM-light can work in classification, regression and preference ranking modes */  public static final int FOLD_CREATION_MODE_STRATIFIED = 1;  public static final int FOLD_CREATION_MODE_RANDOM = 2;  public static final Tag[] TAGS_FOLD_CREATION_MODE = {    new Tag(FOLD_CREATION_MODE_STRATIFIED, "Stratified"),    new Tag(FOLD_CREATION_MODE_RANDOM, "Random")  };  protected int m_foldCreationMode = FOLD_CREATION_MODE_STRATIFIED;  /** The ResultListener to send results to */  protected ResultListener m_resultListener = new CSVResultListener();  /** The number of folds in the cross-validation */  protected int m_numFolds = 2;  /** Save raw output of split evaluators --- for debugging purposes */  protected boolean m_debugOutput = false;  /** The output zipper to use for saving raw splitEvaluator output */  protected OutputZipper m_zipDest = null;  /** The destination output file/directory for raw output */  protected File m_outputFile = new File(				new File(System.getProperty("user.dir")), 				"splitEvalutorOut.zip");  /** The separate training file if desired */  protected String m_separateTrainingFile = new String("");  /** The SplitEvaluator used to generate results */  protected SplitEvaluator m_splitEvaluator = new DeduperSplitEvaluator();  /** The names of any additional measures to look for in SplitEvaluators */  protected String [] m_additionalMeasures = null;  /** The specific points to plot, either integers representing specific numbers of training examples,   * or decimal fractions representing percentages of the full training set*/  protected double[] m_plotPoints = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,				     0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0};  /* The name of the key field containing the dataset name */  public static String DATASET_FIELD_NAME = "Dataset";  /* The name of the key field containing the run number */  public static String RUN_FIELD_NAME = "Run";  /* The name of the key field containing the fold number */  public static String FOLD_FIELD_NAME = "Fold";  /* The name of the result field containing the timestamp */  public static String TIMESTAMP_FIELD_NAME = "Date_time";  /* The name of the key field containing the learning rate step number */  public static String RECALL_FIELD_NAME = "Fraction_instances";  /**   * Returns a string describing this result producer   * @return a description of the result producer suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Performs a learning-curve cross validation run using a supplied " +      "deduping  split evaluator. Trains on increasing subsets of the training data for each split";  }  /**   * Sets the dataset that results will be obtained for.   *   * @param instances a value of type 'Instances'.   */  public void setInstances(Instances instances) {    m_instances = instances;  }  /**   * Sets the object to send results of each run to.   *   * @param listener a value of type 'ResultListener'   */  public void setResultListener(ResultListener listener) {    m_resultListener = listener;  }  /**   * Set a list of method names for additional measures to look for   * in SplitEvaluators. This could contain many measures (of which only a   * subset may be produceable by the current SplitEvaluator) if an experiment   * is the type that iterates over a set of properties.   * @param additionalMeasures an array of measure names, null if none   */  public void setAdditionalMeasures(String [] additionalMeasures) {    m_additionalMeasures = additionalMeasures;    if (m_splitEvaluator != null) {      System.err.println(" DedupingPRCurveCVResultProducerSplit: setting additional "			 +"measures for "			 +"split evaluator");      m_splitEvaluator.setAdditionalMeasures(m_additionalMeasures);    }  }  /**   * Returns an enumeration of any additional measure names that might be   * in the SplitEvaluator   * @return an enumeration of the measure names   */  public Enumeration enumerateMeasures() {    Vector newVector = new Vector();    if (m_splitEvaluator instanceof AdditionalMeasureProducer) {      Enumeration en = ((AdditionalMeasureProducer)m_splitEvaluator).	enumerateMeasures();      while (en.hasMoreElements()) {	String mname = (String)en.nextElement();	newVector.addElement(mname);      }    }    return newVector.elements();  }    /**   * Returns the value of the named measure   * @param measureName the name of the measure to query for its value   * @return the value of the named measure   * @exception IllegalArgumentException if the named measure is not supported   */  public double getMeasure(String additionalMeasureName) {    if (m_splitEvaluator instanceof AdditionalMeasureProducer) {      return ((AdditionalMeasureProducer)m_splitEvaluator).	getMeasure(additionalMeasureName);    } else {      throw new IllegalArgumentException("DedupingPRCurveCVResultProducerSplit: "					 +"Can't return value for : "+additionalMeasureName					 +". "+m_splitEvaluator.getClass().getName()+" "					 +"is not an AdditionalMeasureProducer");    }  }    /**   * Gets a Double representing the current date and time.   * eg: 1:46pm on 20/5/1999 -> 19990520.1346   *   * @return a value of type Double   */  public static Double getTimestamp() {    Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC"));    double timestamp = now.get(Calendar.YEAR) * 10000      + (now.get(Calendar.MONTH) + 1) * 100      + now.get(Calendar.DAY_OF_MONTH)      + now.get(Calendar.HOUR_OF_DAY) / 100.0      + now.get(Calendar.MINUTE) / 10000.0;    return new Double(timestamp);  }    /**   * Prepare to generate results.   *   * @exception Exception if an error occurs during preprocessing.   */  public void preProcess() throws Exception {    if (m_splitEvaluator == null) {      throw new Exception("No SplitEvalutor set");    }    if (m_resultListener == null) {      throw new Exception("No ResultListener set");    }    m_resultListener.preProcess(this);  }    /**   * Perform any postprocessing. When this method is called, it indicates   * that no more requests to generate results for the current experiment   * will be sent.   *   * @exception Exception if an error occurs   */  public void postProcess() throws Exception {    m_resultListener.postProcess(this);    if (m_debugOutput) {      if (m_zipDest != null) {	m_zipDest.finished();	m_zipDest = null;      }    }  }    /**   * Gets the keys for a specified run number. Different run   * numbers correspond to different randomizations of the data. Keys   * produced should be sent to the current ResultListener   *   * @param run the run number to get keys for.   * @exception Exception if a problem occurs while getting the keys   */  public void doRunKeys(int run) throws Exception {    int numExtraKeys = 4;    if (m_instances == null) {      throw new Exception("No Instances set");    }    if (m_resultListener == null) {      throw new Exception("No ResultListener set");    }    for (int fold = 0; fold < m_numFolds; fold++) {        int pointNum = 0;      // For each subsample size      for (int i = 0; i < m_plotPoints.length; i++) {	// Add in some fields to the key like run and fold number, dataset name	Object [] seKey = m_splitEvaluator.getKey();		Object [] key = new Object [seKey.length + numExtraKeys];	key[0] = Utils.backQuoteChars(m_instances.relationName());	key[1] = "" + run;	key[2] = "" + (fold + 1);	key[3] = "" + m_plotPoints[i];	System.arraycopy(seKey, 0, key, numExtraKeys, seKey.length);	if (m_resultListener.isResultRequired(this, key)) {	  try {	    m_resultListener.acceptResult(this, key, null);	  } catch (Exception ex) {	    // Save the train and test datasets for debugging purposes?	    throw ex;	  }	}      }    }  }  /**   * Gets the results for a specified run number. Different run   * numbers correspond to different randomizations of the data. Results   * produced should be sent to the current ResultListener   *   * @param run the run number to get results for.   * @exception Exception if a problem occurs while getting the results   */  public void doRun(int run) throws Exception {    int numExtraKeys = 4;    if (getRawOutput()) {      if (m_zipDest == null) {	m_zipDest = new OutputZipper(m_outputFile);      }    }    if (m_instances == null) {      throw new Exception("No Instances set");    }    if (m_resultListener == null) {      throw new Exception("No ResultListener set");    }    if (!m_instances.classAttribute().isNominal()) {      throw new Exception("Class attribute must be nominal - it is the true Object ID");    }    // Randomize on a copy of the original dataset    Instances runInstances = new Instances(m_instances);    runInstances.randomize(new Random(run));    ArrayList foldList = createFoldList(runInstances, m_numFolds);    // If a separate training file is used, create separate folds for it    ArrayList sepFoldList = null;    if (m_separateTrainingFile.length() > 0) {      Instances trainInstances = new Instances(new BufferedReader(new FileReader(m_separateTrainingFile)));      trainInstances.setClassIndex(trainInstances.numAttributes() - 1);      trainInstances.randomize(new Random(run));      sepFoldList = createFoldList(trainInstances, m_numFolds);      System.out.println("Got separate training file " + m_separateTrainingFile + " of " + trainInstances.numInstances() + " instances");    }     for (int fold = 0; fold < m_numFolds; fold++) {      Instances train = ((sepFoldList == null) ?	getTrainingFold(foldList, fold) :	getTrainingFold(sepFoldList, fold));      // Randomly shuffle the  training set for fold creation      train.randomize(new Random(fold));	          Instances test = (Instances) foldList.get(fold);      System.out.println("Run:" + run + " Fold:" + fold + " TestSize=" + test.numInstances());      Object[] prResults = m_splitEvaluator.getResult(train, test);            for (int i = 0; i < m_plotPoints.length; i++) {	// Add in some fields to the key like run and fold number, dataset name	Object [] seKey = m_splitEvaluator.getKey();	Object [] key = new Object [seKey.length + numExtraKeys];	key[0] = Utils.backQuoteChars(m_instances.relationName());	key[1] = "" + run;	key[2] = "" + (fold + 1);	key[3] = "" + m_plotPoints[i];	System.arraycopy(seKey, 0, key, numExtraKeys, seKey.length);	if (m_resultListener.isResultRequired(this, key)) {	  try {	    Object [] seResults = processResults(prResults, m_plotPoints[i]);	    System.out.println("Adding result:  RLevel=" + m_plotPoints[i] +			       "\tR=" + seResults[1] + "\tP=" + seResults[2] +			       "\tFM=" + seResults[3]); 	    Object [] results = new Object [seResults.length + 1];	    results[0] = getTimestamp();	    System.arraycopy(seResults, 0, results, 1,			     seResults.length);	    if (m_debugOutput) {	      String resultName = (""+run+"."+(fold+1)+"."+ "." 				   + Utils.backQuoteChars(runInstances.relationName())				   +"."				   +m_splitEvaluator.toString()).replace(' ','_');	      resultName = Utils.removeSubstring(resultName, 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -