📄 learningrateresultproducer.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * LearningRateResultProducer.java * Copyright (C) 1999 Len Trigg * */package weka.experiment;import java.util.Enumeration;import java.util.Vector;import weka.core.AdditionalMeasureProducer;import weka.core.FastVector;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import java.util.Random;/** * LearningRateResultProducer takes the results from a ResultProducer * and submits the average to the result listener. For non-numeric * result fields, the first value is used. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class LearningRateResultProducer implements ResultListener, ResultProducer, OptionHandler, AdditionalMeasureProducer { /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The ResultProducer used to generate results */ protected ResultProducer m_ResultProducer = new AveragingResultProducer(); /** The names of any additional measures to look for in SplitEvaluators */ protected String [] m_AdditionalMeasures = null; /** * The minimum number of instances to use. If this is zero, the first * step will contain m_StepSize instances */ protected int m_LowerSize = 0; /** * The maximum number of instances to use. -1 indicates no maximum * (other than the total number of instances) */ protected int m_UpperSize = -1; /** The number of instances to add at each step */ protected int m_StepSize = 10; /** The current dataset size during stepping */ protected int m_CurrentSize = 0; /* The name of the key field containing the learning rate step number */ public static String STEP_FIELD_NAME = "Total_instances"; /** * Returns a string describing this result producer * @return a description of the result producer suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Tells a sub-ResultProducer to reproduce the current run for " +"varying sized subsamples of the dataset. Normally used with " +"an AveragingResultProducer and CrossValidationResultProducer " +"combo to generate learning curve results."; } /** * Determines if there are any constraints (imposed by the * destination) on the result columns to be produced by * resultProducers. Null should be returned if there are NO * constraints, otherwise a list of column names should be * returned as an array of Strings. * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's * results will be restricted. * @exception Exception if constraints can't be determined */ public String [] determineColumnConstraints(ResultProducer rp) throws Exception { return null; } /** * Gets the keys for a specified run number. Different run * numbers correspond to different randomizations of the data. Keys * produced should be sent to the current ResultListener * * @param run the run number to get keys for. * @exception Exception if a problem occurs while getting the keys */ public void doRunKeys(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.setInstances(m_Instances); // For each subsample size if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= m_Instances.numInstances() && ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) { m_ResultProducer.doRunKeys(run); m_CurrentSize += m_StepSize; } } /** * Gets the results for a specified run number. Different run * numbers correspond to different randomizations of the data. Results * produced should be sent to the current ResultListener * * @param run the run number to get results for. * @exception Exception if a problem occurs while getting the results */ public void doRun(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); runInstances.randomize(new Random(run)); if (runInstances.classAttribute().isNominal()) { runInstances.stratify(m_StepSize); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); // For each subsample size if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= m_Instances.numInstances() && ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) { m_ResultProducer.setInstances(new Instances(runInstances, 0, m_CurrentSize)); m_ResultProducer.doRun(run); m_CurrentSize += m_StepSize; } } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @exception Exception if an error occurs during preprocessing. */ public void preProcess(ResultProducer rp) throws Exception { if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Prepare to generate results. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @exception Exception if an error occurs during preprocessing. */ public void preProcess() throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.preProcess(); } /** * When this method is called, it indicates that no more results * will be sent that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @exception Exception if an error occurs */ public void postProcess(ResultProducer rp) throws Exception { m_ResultListener.postProcess(this); } /** * When this method is called, it indicates that no more requests to * generate results for the current experiment will be sent. The * ResultProducer should call preProcess(this) on the * ResultListener it is to send results to. * * @exception Exception if an error occurs */ public void postProcess() throws Exception { m_ResultProducer.postProcess(); } /** * Accepts results from a ResultProducer. * * @param rp the ResultProducer that generated the results * @param key an array of Objects (Strings or Doubles) that uniquely * identify a result for a given ResultProducer with given compatibilityState * @param result the results stored in an array. The objects stored in * the array may be Strings, Doubles, or null (for the missing value). * @exception Exception if the result could not be accepted. */ public void acceptResult(ResultProducer rp, Object [] key, Object [] result) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // Add in current step as key field Object [] newKey = new Object [key.length + 1]; System.arraycopy(key, 0, newKey, 0, key.length); newKey[key.length] = new String("" + m_CurrentSize); // Pass on to result listener m_ResultListener.acceptResult(this, newKey, result); } /** * Determines whether the results for a specified key must be * generated. * * @param rp the ResultProducer wanting to generate the results * @param key an array of Objects (Strings or Doubles) that uniquely * identify a result for a given ResultProducer with given compatibilityState * @return true if the result should be generated * @exception Exception if it could not be determined if the result * is needed. */ public boolean isResultRequired(ResultProducer rp, Object [] key) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // Add in current step as key field Object [] newKey = new Object [key.length + 1]; System.arraycopy(key, 0, newKey, 0, key.length); newKey[key.length] = new String("" + m_CurrentSize); // Pass on request to result listener return m_ResultListener.isResultRequired(this, newKey); } /** * Gets the names of each of the columns produced for a single run. * * @return an array containing the name of each column * @exception Exception if key names cannot be generated */ public String [] getKeyNames() throws Exception { String [] keyNames = m_ResultProducer.getKeyNames(); String [] newKeyNames = new String [keyNames.length + 1]; System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length); // Think of a better name for this key field newKeyNames[keyNames.length] = STEP_FIELD_NAME; return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. * This method should really be static. * * @return an array containing objects of the type of each column. The * objects should be Strings, or Doubles. * @exception Exception if the key types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ public Object [] getKeyTypes() throws Exception { Object [] keyTypes = m_ResultProducer.getKeyTypes(); Object [] newKeyTypes = new Object [keyTypes.length + 1]; System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length); newKeyTypes[keyTypes.length] = ""; return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. * A new result field is added for the number of results used to * produce each average. * If only averages are being produced the names are not altered, if * standard deviations are produced then "Dev_" and "Avg_" are prepended * to each result deviation and average field respectively. * * @return an array containing the name of each column * @exception Exception if the result names could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ public String [] getResultNames() throws Exception { return m_ResultProducer.getResultNames(); } /** * Gets the data types of each of the columns produced for a single run. * * @return an array containing objects of the type of each column. The * objects should be Strings, or Doubles. * @exception Exception if the result types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ public Object [] getResultTypes() throws Exception { return m_ResultProducer.getResultTypes(); } /** * Gets a description of the internal settings of the result * producer, sufficient for distinguishing a ResultProducer * instance from another with different settings (ignoring * those settings set through this interface). For example, * a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should * be compatible. Typically if a ResultProducer is an OptionHandler,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -