⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 learningrateresultproducer.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    LearningRateResultProducer.java *    Copyright (C) 1999 Len Trigg * */package weka.experiment;import java.util.Enumeration;import java.util.Vector;import weka.core.AdditionalMeasureProducer;import weka.core.FastVector;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import java.util.Random;/** * LearningRateResultProducer takes the results from a ResultProducer * and submits the average to the result listener. For non-numeric * result fields, the first value is used. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.1.1.1 $ */public class LearningRateResultProducer   implements ResultListener, ResultProducer, OptionHandler,	     AdditionalMeasureProducer {  /** The dataset of interest */  protected Instances m_Instances;  /** The ResultListener to send results to */  protected ResultListener m_ResultListener = new CSVResultListener();  /** The ResultProducer used to generate results */  protected ResultProducer m_ResultProducer    = new AveragingResultProducer();  /** The names of any additional measures to look for in SplitEvaluators */  protected String [] m_AdditionalMeasures = null;  /**    * The minimum number of instances to use. If this is zero, the first   * step will contain m_StepSize instances    */  protected int m_LowerSize = 0;    /**   * The maximum number of instances to use. -1 indicates no maximum    * (other than the total number of instances)   */  protected int m_UpperSize = -1;  /** The number of instances to add at each step */  protected int m_StepSize = 10;  /** The current dataset size during stepping */  protected int m_CurrentSize = 0;  /* The name of the key field containing the learning rate step number */  public static String STEP_FIELD_NAME = "Total_instances";  /**   * Returns a string describing this result producer   * @return a description of the result producer suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Tells a sub-ResultProducer to reproduce the current run for "      +"varying sized subsamples of the dataset. Normally used with "      +"an AveragingResultProducer and CrossValidationResultProducer "      +"combo to generate learning curve results.";  }  /**   * Determines if there are any constraints (imposed by the   * destination) on the result columns to be produced by   * resultProducers. Null should be returned if there are NO   * constraints, otherwise a list of column names should be   * returned as an array of Strings.   * @param rp the ResultProducer to which the constraints will apply   * @return an array of column names to which resutltProducer's   * results will be restricted.   * @exception Exception if constraints can't be determined   */  public String [] determineColumnConstraints(ResultProducer rp)     throws Exception {    return null;  }  /**   * Gets the keys for a specified run number. Different run   * numbers correspond to different randomizations of the data. Keys   * produced should be sent to the current ResultListener   *   * @param run the run number to get keys for.   * @exception Exception if a problem occurs while getting the keys   */  public void doRunKeys(int run) throws Exception {    if (m_ResultProducer == null) {      throw new Exception("No ResultProducer set");    }    if (m_ResultListener == null) {      throw new Exception("No ResultListener set");    }    if (m_Instances == null) {      throw new Exception("No Instances set");    }    // Tell the resultproducer to send results to us    m_ResultProducer.setResultListener(this);    m_ResultProducer.setInstances(m_Instances);    // For each subsample size    if (m_LowerSize == 0) {      m_CurrentSize = m_StepSize;    } else {      m_CurrentSize = m_LowerSize;    }    while (m_CurrentSize <= m_Instances.numInstances() &&           ((m_UpperSize == -1) ||            (m_CurrentSize <= m_UpperSize))) {      m_ResultProducer.doRunKeys(run);      m_CurrentSize += m_StepSize;    }  }  /**   * Gets the results for a specified run number. Different run   * numbers correspond to different randomizations of the data. Results   * produced should be sent to the current ResultListener   *   * @param run the run number to get results for.   * @exception Exception if a problem occurs while getting the results   */  public void doRun(int run) throws Exception {    if (m_ResultProducer == null) {      throw new Exception("No ResultProducer set");    }    if (m_ResultListener == null) {      throw new Exception("No ResultListener set");    }    if (m_Instances == null) {      throw new Exception("No Instances set");    }    // Randomize on a copy of the original dataset    Instances runInstances = new Instances(m_Instances);    runInstances.randomize(new Random(run));    if (runInstances.classAttribute().isNominal()) {      runInstances.stratify(m_StepSize);    }    // Tell the resultproducer to send results to us    m_ResultProducer.setResultListener(this);    // For each subsample size    if (m_LowerSize == 0) {      m_CurrentSize = m_StepSize;    } else {      m_CurrentSize = m_LowerSize;    }    while (m_CurrentSize <= m_Instances.numInstances() &&           ((m_UpperSize == -1) ||            (m_CurrentSize <= m_UpperSize))) {      m_ResultProducer.setInstances(new Instances(runInstances, 0,                                                   m_CurrentSize));      m_ResultProducer.doRun(run);      m_CurrentSize += m_StepSize;    }  }      /**   * Prepare for the results to be received.   *   * @param rp the ResultProducer that will generate the results   * @exception Exception if an error occurs during preprocessing.   */  public void preProcess(ResultProducer rp) throws Exception {    if (m_ResultListener == null) {      throw new Exception("No ResultListener set");    }    m_ResultListener.preProcess(this);  }  /**   * Prepare to generate results. The ResultProducer should call   * preProcess(this) on the ResultListener it is to send results to.   *   * @exception Exception if an error occurs during preprocessing.   */  public void preProcess() throws Exception {        if (m_ResultProducer == null) {      throw new Exception("No ResultProducer set");    }    // Tell the resultproducer to send results to us    m_ResultProducer.setResultListener(this);    m_ResultProducer.preProcess();  }    /**   * When this method is called, it indicates that no more results   * will be sent that need to be grouped together in any way.   *   * @param rp the ResultProducer that generated the results   * @exception Exception if an error occurs   */  public void postProcess(ResultProducer rp) throws Exception {    m_ResultListener.postProcess(this);  }  /**   * When this method is called, it indicates that no more requests to   * generate results for the current experiment will be sent. The   * ResultProducer should call preProcess(this) on the   * ResultListener it is to send results to.   *   * @exception Exception if an error occurs   */  public void postProcess() throws Exception {    m_ResultProducer.postProcess();  }    /**   * Accepts results from a ResultProducer.   *   * @param rp the ResultProducer that generated the results   * @param key an array of Objects (Strings or Doubles) that uniquely   * identify a result for a given ResultProducer with given compatibilityState   * @param result the results stored in an array. The objects stored in   * the array may be Strings, Doubles, or null (for the missing value).   * @exception Exception if the result could not be accepted.   */  public void acceptResult(ResultProducer rp, Object [] key, Object [] result)    throws Exception {    if (m_ResultProducer != rp) {      throw new Error("Unrecognized ResultProducer sending results!!");    }    // Add in current step as key field    Object [] newKey = new Object [key.length + 1];    System.arraycopy(key, 0, newKey, 0, key.length);    newKey[key.length] = new String("" + m_CurrentSize);    // Pass on to result listener    m_ResultListener.acceptResult(this, newKey, result);  }  /**   * Determines whether the results for a specified key must be   * generated.   *   * @param rp the ResultProducer wanting to generate the results   * @param key an array of Objects (Strings or Doubles) that uniquely   * identify a result for a given ResultProducer with given compatibilityState   * @return true if the result should be generated   * @exception Exception if it could not be determined if the result    * is needed.   */  public boolean isResultRequired(ResultProducer rp, Object [] key)     throws Exception {    if (m_ResultProducer != rp) {      throw new Error("Unrecognized ResultProducer sending results!!");    }    // Add in current step as key field    Object [] newKey = new Object [key.length + 1];    System.arraycopy(key, 0, newKey, 0, key.length);    newKey[key.length] = new String("" + m_CurrentSize);    // Pass on request to result listener    return m_ResultListener.isResultRequired(this, newKey);  }  /**   * Gets the names of each of the columns produced for a single run.   *   * @return an array containing the name of each column   * @exception Exception if key names cannot be generated   */  public String [] getKeyNames() throws Exception {    String [] keyNames = m_ResultProducer.getKeyNames();    String [] newKeyNames = new String [keyNames.length + 1];    System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length);    // Think of a better name for this key field    newKeyNames[keyNames.length] = STEP_FIELD_NAME;    return newKeyNames;  }  /**   * Gets the data types of each of the columns produced for a single run.   * This method should really be static.   *   * @return an array containing objects of the type of each column. The    * objects should be Strings, or Doubles.   * @exception Exception if the key types could not be determined (perhaps   * because of a problem from a nested sub-resultproducer)   */  public Object [] getKeyTypes() throws Exception {    Object [] keyTypes = m_ResultProducer.getKeyTypes();    Object [] newKeyTypes = new Object [keyTypes.length + 1];    System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length);    newKeyTypes[keyTypes.length] = "";    return newKeyTypes;  }  /**   * Gets the names of each of the columns produced for a single run.   * A new result field is added for the number of results used to   * produce each average.   * If only averages are being produced the names are not altered, if   * standard deviations are produced then "Dev_" and "Avg_" are prepended   * to each result deviation and average field respectively.   *   * @return an array containing the name of each column   * @exception Exception if the result names could not be determined (perhaps   * because of a problem from a nested sub-resultproducer)   */  public String [] getResultNames() throws Exception {    return m_ResultProducer.getResultNames();  }  /**   * Gets the data types of each of the columns produced for a single run.   *   * @return an array containing objects of the type of each column. The    * objects should be Strings, or Doubles.   * @exception Exception if the result types could not be determined (perhaps   * because of a problem from a nested sub-resultproducer)   */  public Object [] getResultTypes() throws Exception {    return m_ResultProducer.getResultTypes();  }  /**   * Gets a description of the internal settings of the result   * producer, sufficient for distinguishing a ResultProducer   * instance from another with different settings (ignoring   * those settings set through this interface). For example,   * a cross-validation ResultProducer may have a setting for the   * number of folds. For a given state, the results produced should   * be compatible. Typically if a ResultProducer is an OptionHandler,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -