⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 semisupclassifiersplitevaluator.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    SemiSupClassifierSplitEvaluator.java *    Copyright (C) 2003 Prem Melville * */package weka.experiment;import java.io.*;import java.util.*;import weka.core.*;import weka.classifiers.*;/** * A SplitEvaluator that produces results for a semi-supervised * classification scheme on a nominal class attribute. Currently this * evaluator collects the statistics as for purely supervised * classifiers. However, it can be modified to collect more statistics * specific to semi-supervised learning. * * -W classname <br> * Specify the full class name of the classifier to evaluate. <p> * * -C class index <br> * The index of the class for which IR statistics are to * be output. (default 1) <p> * * @author Prem Melville (melville@cs.utexas.edu) */public class SemiSupClassifierSplitEvaluator extends ClassifierSplitEvaluator implements SemiSupSplitEvaluator {        /**     * Gets the results for the supplied train and test datasets.     *     * @param train the training Instances.     * @param unlabeled the unlabeled training Instances.     * @param test the testing Instances.     * @return the results stored in an array. The objects stored in     * the array may be Strings, Doubles, or null (for the missing value).     * @exception Exception if a problem occurs while getting the results     */    public Object [] getResult(Instances train, Instances unlabeled, Instances test) throws Exception{	if (m_Classifier == null) {	    throw new Exception("No classifier has been specified");	}	//Modification to allow for semisupervision	if(m_Classifier instanceof SemiSupClassifier) ((SemiSupClassifier) m_Classifier).setUnlabeled(unlabeled);		return(getResult(train, test));    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -