📄 semisupincompletelabelcurvecvresultproducer.java
字号:
else System.out.println("Run:" + run + " Fold:" + fold + " Size:" + m_CurrentSize + " NumMissingLablels:" + m_NumMissingLabels); Instances test = new Instances(testSet); Instances labeledTrainSubset = new Instances(train, 0, m_CurrentSize); Instances unlabeledTrainSubsetWithLabels = new Instances(train, m_CurrentSize, maxTrainSize()-m_CurrentSize); System.out.println("labeledTrain: " + m_CurrentSize + ", unlabeledTrain: " + unlabeledTrainSubsetWithLabels.numInstances() + ", maxTrain: " + maxTrainSize()); if (m_IsTransductive) { for (int i=0; i<test.numInstances(); i++) { unlabeledTrainSubsetWithLabels.add(test.instance(i)); } } // Select random set of missing class labels to remove from training data Random random = new Random(fold); int [] marks = new int[numClasses]; for (int i=0; i<numClasses; i++) marks[i] = 0; for (int rand=0; rand<m_NumMissingLabels; rand++) { int classToRemove = random.nextInt(numClasses); while (marks[classToRemove] == 1) { classToRemove = random.nextInt(numClasses); } marks[classToRemove] = 1; } // Remove labeled data with missing class labels from training set /* for (int i=0; i<numClasses; i++) { if (marks[i] == 1) System.out.println("Removing class: " + i + " from train"); else System.out.println("Keeping class: " + i + " in train"); } */ for (int num=0; num<labeledTrainSubset.numInstances(); num++) { Instance inst = labeledTrainSubset.instance(num); if (marks[(int) inst.classValue()] == 1) { // System.out.println("Removing train instance with class " + inst.classValue()); inst.setClassMissing(); } } labeledTrainSubset.deleteWithMissingClass(); System.out.println("NumInstances in train: " + labeledTrainSubset.numInstances()); // Keep data only having missing class labels in test set if (m_NumMissingLabels != 0) { // if no classes removed, do normal clustering for (int num=0; num<test.numInstances(); num++) { Instance inst = test.instance(num); if (marks[(int) inst.classValue()] == 0) { // System.out.println("Removing test instance with class " + inst.classValue()); inst.setClassMissing(); } } test.deleteWithMissingClass(); } System.out.println("NumInstances in test: " + test.numInstances()); int classIndex = unlabeledTrainSubsetWithLabels.numAttributes(); // assuming that the last attribute is always the class // Need to remove the class labels from the unlabeledTrainSubsetWithLabels data before training learner Instances unlabeledTrainSubset = new Instances(unlabeledTrainSubsetWithLabels); unlabeledTrainSubset.deleteClassAttribute(); Object [] seResults; if (m_SplitEvaluator instanceof SemiSupClustererSplitEvaluator) { seResults = ((SemiSupClustererSplitEvaluator) m_SplitEvaluator).getResult(labeledTrainSubset, unlabeledTrainSubset, test, numClasses); } else { throw new Exception("SplitEvaluator should be SemiSupClustererSplitEvaluator - SemiSupClassifierSplitEvaluator not yet implemented"); } Object [] results = new Object [seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = (""+run+"."+(fold+1)+"."+ m_CurrentSize + "." + Utils.backQuoteChars(runInstances.relationName()) +"." +m_SplitEvaluator.toString()).replace(' ','_'); resultName = Utils.removeSubstring(resultName, "weka.clusterers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } if (m_PlotPoints != null) { pointNum ++; m_NumMissingLabels = plotPoint(pointNum); } else { m_NumMissingLabels += m_StepSize; } } } } /** Determines if the points specified are fractions of the total number of examples */ protected boolean setIsFraction(){ if (m_PlotPoints != null){ if(!isInteger(m_PlotPoints[0]))//if the first point is not an integer m_IsFraction = true; else m_IsFraction = false; } return m_IsFraction; } /** Return the number of training examples for the ith point on the * curve for plotPoints as specified. */ protected int plotPoint(int i) { // If i beyond number of given plot points return a value greater than maximum training size int length = m_PlotPoints.length; double point = 0; if (i >= length) { point = m_Instances.numClasses() + 1; } else { point = m_PlotPoints[i]; } return (int)point; } /** Return true if the given double represents an integer value */ protected static boolean isInteger(double val) { return Utils.eq(Math.floor(val), Math.ceil(val)); } /** * Gets the names of each of the columns produced for a single run. * This method should really be static. * * @return an array containing the name of each column */ public String [] getKeyNames() { String [] keyNames = m_SplitEvaluator.getKeyNames(); // Add in the names of our extra key fields int numExtraKeys; if(m_IsFraction) numExtraKeys = 5; else numExtraKeys = 4; String [] newKeyNames = new String [keyNames.length + numExtraKeys]; newKeyNames[0] = DATASET_FIELD_NAME; newKeyNames[1] = RUN_FIELD_NAME; newKeyNames[2] = FOLD_FIELD_NAME; newKeyNames[3] = STEP_FIELD_NAME; if(m_IsFraction) newKeyNames[4] = FRACTION_FIELD_NAME; System.arraycopy(keyNames, 0, newKeyNames, numExtraKeys, keyNames.length); return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. * This method should really be static. * * @return an array containing objects of the type of each column. The * objects should be Strings, or Doubles. */ public Object [] getKeyTypes() { Object [] keyTypes = m_SplitEvaluator.getKeyTypes(); int numExtraKeys; if(m_IsFraction) numExtraKeys = 5; else numExtraKeys = 4; // Add in the types of our extra fields Object [] newKeyTypes = new String [keyTypes.length + numExtraKeys]; newKeyTypes[0] = new String(); newKeyTypes[1] = new String(); newKeyTypes[2] = new String(); newKeyTypes[3] = new String(); if(m_IsFraction) newKeyTypes[4] = new String(); System.arraycopy(keyTypes, 0, newKeyTypes, numExtraKeys, keyTypes.length); return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. * This method should really be static. * * @return an array containing the name of each column */ public String [] getResultNames() { String [] resultNames = m_SplitEvaluator.getResultNames(); // Add in the names of our extra Result fields String [] newResultNames = new String [resultNames.length + 1]; newResultNames[0] = TIMESTAMP_FIELD_NAME; System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); return newResultNames; } /** * Gets the data types of each of the columns produced for a single run. * This method should really be static. * * @return an array containing objects of the type of each column. The * objects should be Strings, or Doubles. */ public Object [] getResultTypes() { Object [] resultTypes = m_SplitEvaluator.getResultTypes(); // Add in the types of our extra Result fields Object [] newResultTypes = new Object [resultTypes.length + 1]; newResultTypes[0] = new Double(0); System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); return newResultTypes; } /** * Gets a description of the internal settings of the result * producer, sufficient for distinguishing a ResultProducer * instance from another with different settings (ignoring * those settings set through this interface). For example, * a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should * be compatible. Typically if a ResultProducer is an OptionHandler, * this string will represent the command line arguments required * to set the ResultProducer to that state. * * @return the description of the ResultProducer state, or null * if no state is defined */ public String getCompatibilityState() { String result = "-X " + m_NumFolds + " -S " + getStepSize() + " -L " + getLowerSize() + " -U " + getUpperSize() + " "; if (m_SplitEvaluator == null) { result += "<null SplitEvaluator>"; } else { result += "-W " + m_SplitEvaluator.getClass().getName(); } return result + " --"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String outputFileTipText() { return "Set the destination for saving raw output. If the rawOutput " +"option is selected, then output from the splitEvaluator for " +"individual folds is saved. If the destination is a directory, " +"then each output is saved to an individual gzip file; if the " +"destination is a file, then each output is saved as an entry " +"in a zip file."; } /** * Get the value of OutputFile. * * @return Value of OutputFile. */ public File getOutputFile() { return m_OutputFile; } /** * Set the value of OutputFile. * * @param newOutputFile Value to assign to OutputFile. */ public void setOutputFile(File newOutputFile) { m_OutputFile = newOutputFile; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsTipText() { return "Number of folds to use in cross validation."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String isTransductiveTipText() { return "Whether evaluation is transductive or not."; } /** * Get the value of IsTransductive. * * @return Value of IsTransductive. */ public boolean getIsTransductive() { return m_IsTransductive; } /** * Set the value of IsTransductive. * * @param flag Value to assign to IsTransductive. */ public void setIsTransductive(boolean flag) { m_IsTransductive = flag; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String lowerSizeTipText() { return "Set the minimum number of categories to drop in a training set. Setting zero " + "here will actually drop <stepSize> number of categories at the first " + "step "; } /** * Get the value of LowerSize. * * @return Value of LowerSize. */ public int getLowerSize() { return m_LowerSize; } /** * Set the value of LowerSize. * * @param newLowerSize Value to assign to * LowerSize. */ public void setLowerSize(int newLowerSize) { m_LowerSize = newLowerSize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String upperSizeTipText() { return "Set the maximum number of labeled categories to drop in a training set. Setting -1 " + "sets no upper limit (other than the total number of categories " + "in the full training set)"; } /** * Get the value of UpperSize. * * @return Value of UpperSize. */ public int getUpperSize() { return m_UpperSize; } /** * Set the value of UpperSize.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -