⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 incrementalclassifierevaluator.java

📁 wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    IncrementalClassifierEvaluator.java *    Copyright (C) 2002 Mark Hall * */package weka.gui.beans;import weka.classifiers.Classifier;import weka.classifiers.DistributionClassifier;import weka.classifiers.Evaluation;import weka.core.Instances;import weka.core.Instance;import weka.core.Utils;import weka.gui.Logger;import java.io.Serializable;import java.util.Vector;import java.util.Enumeration;import javax.swing.JPanel;import javax.swing.JLabel;import javax.swing.ImageIcon;import javax.swing.SwingConstants;import javax.swing.BorderFactory;import java.awt.*;/** * Bean that evaluates incremental classifiers * * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> * @version $Revision: 1.1.1.1 $ */public class IncrementalClassifierEvaluator  extends AbstractEvaluator  implements IncrementalClassifierListener,	     EventConstraints {  private transient Evaluation m_eval;  private transient Classifier m_classifier;    private Vector m_listeners = new Vector();  private Vector m_textListeners = new Vector();  private Vector m_dataLegend = new Vector();  private ChartEvent m_ce = new ChartEvent(this);  private double [] m_dataPoint = new double[1];  private boolean m_reset = false;  private double m_min = Double.MAX_VALUE;  private double m_max = Double.MIN_VALUE;  public IncrementalClassifierEvaluator() {    super();    m_visual.setText("IncrementalClassifierEvaluator");  }  /**   * Accepts and processes a classifier encapsulated in an incremental   * classifier event   *   * @param ce an <code>IncrementalClassifierEvent</code> value   */  public void acceptClassifier(final IncrementalClassifierEvent ce) {    try {      if (ce.getStatus() == IncrementalClassifierEvent.NEW_BATCH) {	m_eval = new Evaluation(ce.getCurrentInstance().dataset());	m_dataLegend = new Vector();	m_reset = true;	m_dataPoint = new double[1];	Instance inst = ce.getCurrentInstance();	if (inst.classIndex() >= 0) {	  if (inst.attribute(inst.classIndex()).isNominal()) {	    if (inst.isMissing(inst.classIndex())) {	      m_dataLegend.addElement("Confidence");	    } else {	      m_dataLegend.addElement("Accuracy");	    }	  } else {	    if (inst.isMissing(inst.classIndex())) {	      m_dataLegend.addElement("Prediction");	    } else {	      m_dataLegend.addElement("RRSE");	    }	  }	}      } else {	Instance inst = ce.getCurrentInstance();	//	if (inst.attribute(inst.classIndex()).isNominal()) {	double [] dist = null;	double pred = 0;	if (ce.getClassifier() instanceof DistributionClassifier) {	  dist = ((DistributionClassifier)ce.getClassifier())	    .distributionForInstance(inst);	}	if (dist == null) {	  if (!inst.isMissing(inst.classIndex())) {	    m_eval.evaluateModelOnce(ce.getClassifier(), inst);	  } else {	    pred = ce.getClassifier().classifyInstance(inst);	  }	} else {	  if (!inst.isMissing(inst.classIndex())) {	      m_eval.evaluateModelOnce(dist, inst);	  } else {	    pred = ce.getClassifier().classifyInstance(inst);	  }	}	if (inst.classIndex() >= 0) {	  // need to check that the class is not missing	  if (inst.attribute(inst.classIndex()).isNominal()) {	    if (dist != null && !inst.isMissing(inst.classIndex())) {	      if (m_dataPoint.length < 2) {		m_dataPoint = new double[2];		m_dataLegend.addElement("RMSE (prob)");	      }	      //		int classV = (int) inst.value(inst.classIndex());	      m_dataPoint[1] = m_eval.rootMeanSquaredError();	      //  		int maxO = Utils.maxIndex(dist);	      //  		if (maxO == classV) {	      //  		  dist[classV] = -1;	      //  		  maxO = Utils.maxIndex(dist);	      //  		}	      //  		m_dataPoint[1] -= dist[maxO];	    }	    double primaryMeasure = 0;	    if (!inst.isMissing(inst.classIndex())) {	      primaryMeasure = 1.0 - m_eval.errorRate();	    } else if (dist != null) {	      // record confidence as the primary measure	      // (another possibility would be entropy of	      // the distribution, or perhaps average	      // confidence)	      primaryMeasure = dist[Utils.maxIndex(dist)];	    } else {	      // need something for non distribution classifiers when the	      // actual class is missing!	    }	    //	    double [] dataPoint = new double[1];	    m_dataPoint[0] = primaryMeasure;	    //	    double min = 0; double max = 100;	    /*	    ChartEvent e = 		    new ChartEvent(IncrementalClassifierEvaluator.this, 		    m_dataLegend, min, max, dataPoint); */	    m_ce.setLegendText(m_dataLegend);	    m_ce.setMin(0); m_ce.setMax(1);	    m_ce.setDataPoint(m_dataPoint);	    m_ce.setReset(m_reset);	    m_reset = false;	  } else {	    // numeric class	    if (dist != null && !inst.isMissing(inst.classIndex())) {	      double update;	      if (!inst.isMissing(inst.classIndex())) {		update = m_eval.rootRelativeSquaredError();	      } else {		update = pred;	      }	      m_dataPoint[0] = update;	      if (update > m_max) {		  m_max = update;	      }	      if (update < m_min) {		m_min = update;	      }	    }	    	    m_ce.setLegendText(m_dataLegend);	    m_ce.setMin((inst.isMissing(inst.classIndex()) 			 ? m_min			 : 0)); 	    m_ce.setMax(m_max);	    m_ce.setDataPoint(m_dataPoint);	    m_ce.setReset(m_reset);	    m_reset = false;	  }	  notifyChartListeners(m_ce);	  if (ce.getStatus() == IncrementalClassifierEvent.BATCH_FINISHED) {	    if (m_textListeners.size() > 0) {	      String textTitle = ce.getClassifier().getClass().getName();	      textTitle = 		textTitle.substring(textTitle.lastIndexOf('.')+1,				    textTitle.length());	      TextEvent te = 		new TextEvent(this, 			      m_eval.toSummaryString(),			    textTitle);	      notifyTextListeners(te);	    }	  }	}      }    } catch (Exception ex) {      ex.printStackTrace();    }  }  /**   * Returns true, if at the current time, the named event could   * be generated. Assumes that supplied event names are names of   * events that could be generated by this bean.   *   * @param eventName the name of the event in question   * @return true if the named event could be generated at this point in   * time   */  public boolean eventGeneratable(String eventName) {    if (m_listenee == null) {      return false;    }    if (m_listenee instanceof EventConstraints) {      if (!((EventConstraints)m_listenee).	  eventGeneratable("incrementalClassifier")) {	return false;      }    }    return true;  }  /**   * Stop all action   */  public void stop() {    // nothing to do  }  private void notifyChartListeners(ChartEvent ce) {    Vector l;    synchronized (this) {      l = (Vector)m_listeners.clone();    }    if (l.size() > 0) {      for(int i = 0; i < l.size(); i++) {	((ChartListener)l.elementAt(i)).acceptDataPoint(ce);      }    }  }  /**   * Notify all text listeners of a TextEvent   *   * @param te a <code>TextEvent</code> value   */  private void notifyTextListeners(TextEvent te) {    Vector l;    synchronized (this) {      l = (Vector)m_textListeners.clone();    }    if (l.size() > 0) {      for(int i = 0; i < l.size(); i++) {	//	System.err.println("Notifying text listeners "	//			   +"(ClassifierPerformanceEvaluator)");	((TextListener)l.elementAt(i)).acceptText(te);      }    }  }  /**   * Add a chart listener   *   * @param cl a <code>ChartListener</code> value   */  public synchronized void addChartListener(ChartListener cl) {    m_listeners.addElement(cl);  }  /**   * Remove a chart listener   *   * @param cl a <code>ChartListener</code> value   */  public synchronized void removeChartListener(ChartListener cl) {    m_listeners.remove(cl);  }  /**   * Add a text listener   *   * @param cl a <code>TextListener</code> value   */  public synchronized void addTextListener(TextListener cl) {    m_textListeners.addElement(cl);  }  /**   * Remove a text listener   *   * @param cl a <code>TextListener</code> value   */  public synchronized void removeTextListener(TextListener cl) {    m_textListeners.remove(cl);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -