📄 fs1.m
字号:
function fs_1st_d = fS1(X, S, A, N, d)
% the gradient of the similarity constraint function w.r.t. A
% f = \sum_{ij}(x_i-x_j)A(x_i-x_j)' = \sum_{ij}d_ij*A*d_ij'
% df/dA = d(d_ij*A*d_ij')/dA
%
% note that d_ij*A*d_ij' = tr(d_ij*A*d_ij') = tr(d_ij'*d_ij*A)
% so, d(d_ij*A*d_ij')/dA = d_ij'*d_ij
%[N d] = size(X);
fs_1st_d = zeros(d,d);
fudge = 0.000001; % regularizes derivates a little if necessary
for i = 1:N
for j= i+1:N
if S(i,j) == 1
d_ij = X(i,:) - X(j,:);
% distij = d_ij * A * d_ij'; % distance between 'i' and 'j'
% full first derivative of the distance constraints
fs_1st_d = fs_1st_d + d_ij'*d_ij;
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -